next up previous
Next: About this document ... Up: Partial Realizations of Hilbert's Previous: Answers to Some Possible

Bibliography

1
P. Bernays, ``Hilbert, David,'' in: Encyclopedia of Philosophy, vol. 3, edited by P. Edwards, New York, 1967, pp. 496-504.

2
D. K. Brown, Functional Analysis in Weak Subsystems of Second Order Arithmetic, Ph. D. Thesis, Pennsylvania State University, 1987, vii + 150 pages.

3
D. K. Brown and S. G. Simpson, Which set existence axioms are needed to prove the separable Hahn-Banach theorem?, Annals of Pure and Applied Logic, 31, 1986, pp. 123-144.

4
J. Corcoran, Review of [17], Math. Reviews 1982c, #03013.

5
S. Feferman, Systems of predicative analysis I, II, Journal of Symbolic Logic, 29, 1964, pp. 1-30; 33, 1968, pp. 193-220.

6
H. Friedman, Systems of second order arithmetic with restricted induction I, II (abstracts), Journal of Symbolic Logic, 41, 1976, pp. 557-559.

7
H. Friedman, personal communication to L. Harrington, 1977.

8
H. Friedman, S. G. Simpson and R. L. Smith, Countable algebra and set existence axioms, Annals of Pure and Applied Logic, 25, 1983, pp. 141-181.

9
K. Gödel, On formally undecidable propositions of Principia Mathematica and related systems I, translated by J. van Heijenoort, in: [27], pp. 596-616.

10
K. Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica, 12, 1958, pp. 280-287.

11
K. Gödel, What is Cantor's Continuum Problem?, in: Philosophy of Mathematics: Selected Readings, 2nd edition, edited by P. Benacerraf and H. Putnam, Cambridge University Press, 1983, pp. 470-485.

12
L. Harrington, personal communication to H. Friedman, 1977.

13
D. Hilbert, On the infinite, translated by S. Bauer-Mengelberg, in: [27], pp. 367-392.

14
D. Hilbert, The foundations of mathematics, translated by S. Bauer-Mengelberg and D. Føllesdal, in: [27], pp. 464-479.

15
D. Hilbert and P. Bernays, Grundlagen der Mathematik, vols. I and II, 2nd edition, Springer-Verlag, 1968 and 1970, 473 + 571 pages.

16
P. Kitcher, Hilbert's epistemology, Philosophy of Science, 43, 1976, pp. 99-115.

17
M. Kline, Mathematics: The Loss of Certainty, Oxford University Press, New York, 1980, vi + 366 pages.

18
J. Lear, Aristotelian infinity, Proceedings of the Aristotelian Society (n.s.), 80, 1980, pp. 187-210.

19
C. Parsons, On a number-theoretic choice schema and its relation to induction, in: Intuitionism and Proof Theory, edited by J. Myhill, A. Kino, and R. E. Vesley, North-Holland, 1970, pp. 459-473.

20
W. Sieg, Fragments of arithmetic, Annals of Pure and Applied Logic, 28, 1985, pp. 33-71.

21
S. G. Simpson, Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations?, Journal of Symbolic Logic, 49, 1984, pp. 783-802.

22
S. G. Simpson, Friedman's research on subsystems of second order arithmetic, in: Harvey Friedman's Research in the Foundations of Mathematics, edited by L. Harrington, M. Morley, A. Scedrov and S. G. Simpson, North-Holland, 1985, pp. 137-159.

23
S. G. Simpson, Subsystems of Z2 and Reverse Mathematics, appendix to: G. Takeuti, Proof Theory, 2nd edition, North-Holland, 1986, pp. 434-448.

24
S. G. Simpson, Subsystems of Second Order Arithmetic, in preparation

25
W. W. Tait, Finitism, Journal of Philosophy, 1981, pp. 524-546.

26
G. Takeuti, Recent topics on proof theory (in Japanese), Journal of the Japan Association for Philosophy of Science, 17, 1984, pp. 1-5.

27
J. van Heijenoort (editor), From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Harvard University Press, 1967, xii + 660 pages.

28
E. P. Wigner, The unreasonable effectiveness of mathematics in the natural sciences, Communications on Pure and Applied Mathematics, 13, 1960, pp. 1-14.



Stephen G Simpson
1998-10-25