Next: About this document ...
Up: Partial Realizations of Hilbert's
Previous: Answers to Some Possible
-
- 1
- P. Bernays, ``Hilbert, David,'' in: Encyclopedia of
Philosophy, vol. 3, edited by P. Edwards, New York, 1967,
pp. 496-504.
- 2
- D. K. Brown, Functional Analysis in Weak
Subsystems of Second Order Arithmetic, Ph. D. Thesis,
Pennsylvania State University, 1987, vii + 150 pages.
- 3
- D. K. Brown and S. G. Simpson, Which set existence axioms
are needed to prove the separable Hahn-Banach theorem?,
Annals of Pure and Applied Logic, 31, 1986, pp.
123-144.
- 4
- J. Corcoran, Review of [17], Math. Reviews 1982c,
#03013.
- 5
- S. Feferman, Systems of predicative analysis I, II,
Journal of Symbolic Logic, 29, 1964, pp. 1-30;
33, 1968, pp. 193-220.
- 6
- H. Friedman, Systems of second order arithmetic with
restricted induction I, II (abstracts), Journal of Symbolic
Logic, 41, 1976, pp. 557-559.
- 7
- H. Friedman, personal communication to L. Harrington,
1977.
- 8
- H. Friedman, S. G. Simpson and R. L. Smith, Countable
algebra and set existence axioms, Annals of Pure and Applied
Logic, 25, 1983, pp. 141-181.
- 9
- K. Gödel, On formally undecidable propositions of
Principia Mathematica and related systems I, translated by J. van
Heijenoort, in: [27], pp. 596-616.
- 10
- K. Gödel, Über eine bisher noch nicht benützte
Erweiterung des finiten Standpunktes, Dialectica,
12, 1958, pp. 280-287.
- 11
- K. Gödel, What is Cantor's Continuum Problem?, in:
Philosophy of Mathematics: Selected Readings, 2nd edition,
edited by P. Benacerraf and H. Putnam, Cambridge University Press,
1983, pp. 470-485.
- 12
- L. Harrington, personal communication to H. Friedman,
1977.
- 13
- D. Hilbert, On the infinite, translated by S.
Bauer-Mengelberg, in: [27], pp. 367-392.
- 14
- D. Hilbert, The foundations of mathematics, translated by
S. Bauer-Mengelberg and D. Føllesdal, in: [27], pp.
464-479.
- 15
- D. Hilbert and P. Bernays, Grundlagen der
Mathematik, vols. I and II, 2nd edition, Springer-Verlag, 1968
and 1970, 473 + 571 pages.
- 16
- P. Kitcher, Hilbert's epistemology, Philosophy of
Science, 43, 1976, pp. 99-115.
- 17
- M. Kline, Mathematics: The Loss of Certainty,
Oxford University Press, New York, 1980, vi + 366 pages.
- 18
- J. Lear, Aristotelian infinity, Proceedings of the
Aristotelian Society (n.s.), 80, 1980, pp. 187-210.
- 19
- C. Parsons, On a number-theoretic choice schema and
its relation to induction, in: Intuitionism and Proof Theory,
edited by J. Myhill, A. Kino, and R. E. Vesley, North-Holland, 1970,
pp. 459-473.
- 20
- W. Sieg, Fragments of arithmetic, Annals of Pure
and Applied Logic, 28, 1985, pp. 33-71.
- 21
- S. G. Simpson, Which set existence axioms are needed to
prove the Cauchy/Peano theorem for ordinary differential equations?,
Journal of Symbolic Logic, 49, 1984, pp. 783-802.
- 22
- S. G. Simpson, Friedman's research on subsystems of
second order arithmetic, in: Harvey Friedman's Research in the
Foundations of Mathematics, edited by L. Harrington, M. Morley,
A. Scedrov and S. G. Simpson, North-Holland, 1985, pp.
137-159.
- 23
- S. G. Simpson, Subsystems of Z2 and Reverse
Mathematics, appendix to: G. Takeuti, Proof Theory, 2nd
edition, North-Holland, 1986, pp. 434-448.
- 24
- S. G. Simpson, Subsystems of Second Order
Arithmetic, in preparation
- 25
- W. W. Tait, Finitism, Journal of Philosophy,
1981, pp. 524-546.
- 26
- G. Takeuti, Recent topics on proof theory (in Japanese),
Journal of the Japan Association for Philosophy of Science,
17, 1984, pp. 1-5.
- 27
- J. van Heijenoort (editor), From Frege to
Gödel: A Source Book in Mathematical Logic, 1879-1931, Harvard
University Press, 1967, xii + 660 pages.
- 28
- E. P. Wigner, The unreasonable effectiveness of
mathematics in the natural sciences, Communications on Pure
and Applied Mathematics, 13, 1960, pp. 1-14.
Stephen G Simpson
1998-10-25