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Abstract

A mass problem is a set of Turing oracles. If P and ) are mass
problems, we say that P is weakly reducible to @Q if every member of Q)
Turing computes a member of P. Two mass problems are said to be weakly
equivalent if each is weakly reducible to the other. A weak degree is an
equivalence class under weak reducibility. The weak degrees are partially
ordered in the obvious way, by weak reducibility. This partial ordering is
easily seen to be a complete distributive lattice. We focus on the countable
sublattice obtained by restricting to mass problems of the form P = the set
of all paths through T, where T is an infinite computable subtree of the full
binary tree. We present natural examples of such mass problems arising
from mathematical logic, Martin-Lof randomness, effective immunity, and
the Arslanov Completeness Criterion. We also present artificial examples
constructed by means of priority arguments.

This is the lecture notes that I prepared for my series of five lectures at the
Summer School and Workshop on Proof Theory, Computation and Complexity,
held at the Technical University of Dresden, June 23-July 4, 2003. See

http://www.ki.inf.tu-dresden.de/ guglielm/WPT2/.
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1 Turing Degrees

Definition 1.1. We use w to denote the set of natural numbers:
w=1{0,1,2,...}.

We use w* to denote the set of total functions from w into w:
W= {f | frw—w}.

We use 2¢ to denote the set of total functions from w into {0,1}:
2 ={X|X:w—{0,1}}.

The space w* with the obvious product topology is called Baire space.

12

14

16

17

18

19

21

Its

subspace 2% is called Cantor space. We use f,g,h,... to denote points of the

Baire space, and X, Y, Z, ... to denote points of the Cantor space.

Remark 1.2. We sometimes identify subsets of w with their characteristic

functions in 2¢. The characteristic function of A C w is x4 € 2% given by

(n) = lifne A,
XAT= 0ifn ¢ A
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Definition 1.3. For e,m,n € w and g € w*, we write

{e}?(m) =n

to mean that e is the Gédel number of a Turing machine which, if started with
input m (on the input tape) and oracle g (on the auxiliary or oracle tape),
eventually halts with output n (on the output tape).

Remark 1.4. The idea of using an arbitrary, possibly non-computable member
of w* as an oracle is due to Turing [44]. See also Rogers [30, Section 9.2].

Definition 1.5. According to Definition 1.3, each e € w gives rise to a partial
recursive functional ® from w* X w to w, given by ®(g,m) ~ {e}9(m). We
may also view ® as a partial recursive functional from w® to w“, given by
D(g)(m) ~ ®(g,m) ~ {e}9(m). In either case we say that e is an indezx of P.

Remark 1.6. Here ~ denotes strong equality for expressions which may be
undefined. Thus F; ~ F, if and only if Ey, Fs are both undefined, or both
defined and equal. We write E | to mean that E is defined. We write E | to
mean that F is undefined.

Definition 1.7. For f,g € w®, we say that g Turing computes f, or f is
recursive in g, or f is Turing reducible to g, abbreviated f <r g, if ®(g) = f
for some partial recursive functional ®. Thus f < ¢ if and only if there exists
e € w such that {e}9(m) = f(m) for all m € w. Clearly <r is a reflexive,
transitive relation on w®.

We say that f is Turing equivalent to g, abbreviated f =r g, if f <7 g and
g <7 f. Clearly =7 is an equivalence relation on w®.

Definition 1.8. The Turing degrees, or degrees of unsolvability, are the equiv-
alence classes of members of w* under the equivalence relation =7. The Turing
degree of f € w* is denoted deg,(f). We use Dr to denote the set of Turing
degrees. Thus we have

degr(f) ={g€w” | f=rg}
and
Dy = w?/=r = {degr(f) | f €w“}.

Definition 1.9. In Definition 1.3, if there is no oracle g, we write simply

{e}(m) = n.

Thus f € w® is said to be Turing computable, or recursive, if there exists e € w
such that {e}(m) = f(m) for all m € w.

Remark 1.10. We partially order Dy by putting deg,(f) < degp(g) if and
only if f <7 g. Under this partial ordering, Dy is an upper semilattice, with
least upper bound operation given by f & g € w*, where

(f ®g)(2n) = f(n), (f®g)(2n+1)=g(n),

for all f,g € w*. Moreover D7 has a bottom element
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0 = degr(An.0) = {f € w¥ | f is recursive}.
It can be shown that D has no top element and is not a lattice.
We now compare the Baire space, w*, to the Cantor space, 2.
Theorem 1.11. For each f € w® there exists X € 2% such that f =p X.
Proof. Let X be the characteristic function of {2™3" | f(m) = n}. O

Remark 1.12. In view of Theorem 1.11, the Baire space w* and the Cantor
space 2“ are identical as to Turing degrees. Thus we may write

Dr = 2¢/=r = {degy(X)| X € 2°).

Remark 1.13. The idea behind Turing reducibility is that each non-recursive
(i.e., non-computable) X € 2¢ is regarded as an “unsolvable problem”, viz.,
the problem of computing X. Then Y <7 X means that “the problem” Y is
“reducible” to “the problem” X in the sense that, if there were an oracle for
solving X, then, with the help of this oracle, we could solve Y. Thus deg,(X),
the Turing degree of X, is a measure of the “unsolvability” of “the problem”
X. In particular, the Turing degree 0 corresponds to “solvable problems”, i.e.,
recursive members of 2%,

Example 1.14. Turing’s original example of an unsolvable problem is the Halt-
ing Problem, i.e., the (characteristic function of the) set

H={ecw|{e}(0) 1}
= {Gd6del numbers of Turing machines which eventually halt}.

The Turing degree of the Halting Problem is denoted 0’. Turing’s famous the-
orem on unsolvability of the Halting Problem amounts to saying that H is
nonrecursive, i.e., 0’ > 0.

In addition, it is known that there are infinitely many Turing degrees a in
the interval 0 < a < 0’. Moreover, the Turing degrees in this interval do not
form a lattice.

Definition 1.15. A set A C w is said to be recursively enumerable, abbreviated
r. e, if A={f(m)|m € w} for some recursive function f : w — w. In this case,
an index of A is just an index of f. A Turing degree is said to be recursively
enumerable if it is the Turing degree of (the characteristic function of) an r. e.
subset of w. The set of r. e. Turing degrees is denoted R .

Definition 1.16. Anr. e. set C' C w is said to be Turing complete if for every
r. e. set A C w we have A <p C. An r. e. Turing degree is said to be Turing
complete if it is the Turing degree of a Turing complete r. e. set.

Remark 1.17. It is known that the halting set H and its Turing degree 0’
are recursively enumerable and Turing complete. Moreover, if a and b are r.
e. Turing degrees, then so is their least upper bound, sup(a,b). Thus Ry is a
countable upper semilattice with a top element, 0’, and a bottom element, 0.
It is known that Ry is infinite and properly included in the interval 0 < a < 0’
in Dr, and is not a lattice.
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Remark 1.18. More generally, for any Turing degree a = deg;(X), define
a’ = deg;(HX) where HX is (the characteristic function of)

HY ={e|{e}*(0) I},

the halting set relative to X. It is known that the Turing jump operator a — a’
is well defined, because X <p Y implies HX <p HY. It is known that a’ > a,
and that a’ is r. e. relative to a and Turing complete relative to a.

Remark 1.19. The semilattice D of all Turing degrees, and its subsemilattice
R consisting of the r. e. Turing degrees, have been studied intensively for many
years. See Sacks [31], Rogers [30], Lerman [23], Simpson [36] [37], Soare [42].

2 Weak and Strong Degrees

Definition 2.1. A mass problem is a subset of w*. We use, P,Q,R,... to
denote subsets of w?.

Definition 2.2. For P, C w¥, we say that P is weakly reducible to @, abbre-
viated P <,, @, if for each g € Q there exists f € P such that f <7 g. (Recall
that <7 is Turing reducibility.) The notion of weak reducibility was introduced
by Muchnik [28] and has sometimes been called Muchnik reducibility. Clearly
<w is a reflexive, transitive relation on the powerset of w®.

Definition 2.3. We say that P,QQ C w"“ are weakly equivalent, or Muchnik
equivalent, abbreviated P =, @, if P <, @ and Q <,, P. Clearly =, is an
equivalence relation on the powerset of w*. The equivalence classes are called
weak degrees, or Muchnik degrees. The weak degree of P is denoted deg,, (P).
We use D,, to denote the set of weak degrees. Thus we have

deg, (P) ={Q Cuw” | P =, Q}

and
Dy = {deg,(P) | P C w”}.

We partially order D,, by putting deg, (P) < deg,, (Q) if and only if P <,, Q.

Remark 2.4. The idea behind weak reducibility is that an arbitrary subset of
w® may be regarded as a “mass problem”, i.e., a problem whose solution is not
necessarily unique. If P C w* is viewed a mass problem, the “solutions” of P
are just the members of P. A mass problem is regarded as “unsolvable” if it
has no recursive solution. Compare Remark 1.13. Viewing P and ) as mass
problems, P <,, @Q means that P is “reducible” to ) in the sense that, given
any oracle for a solution of @@, we could use this oracle to compute a solution of
P. Thus the weak degree of P is a measure of the “difficulty” of P qua mass
problem.
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Example 2.5. Let T be a consistent, recursively axiomatizable theory. For
instance, we may take T = PA = first order Peano Arithmetic, or T' = ZF =
Zermelo/Fraenkel Set Theory. By a completion of T we mean a maximal con-
sistent theory extending T with the same vocabulary as T. Note that T is
incomplete if and only if 7" has more than one completion. The Gédel Incom-
pleteness Theorem implies that this is the case for T'= PA or T' = ZF.

We identify sentences with their Gédel numbers in w. We identify theories
as sets of (Godel numbers of) sentences. Define

Pr ={X € 2¥| X is (the characteristic function of) a completion of T'}.

We may then view Pr as a mass problem, viz., the “problem” of finding a
completion of T'. The mass problem Pr is regarded as “unsolvable” if and only
if the theory T has no decidable completion. This is equivalent to saying that T'
is essentially undecidable, i.e., there is no consistent, decidable theory extending
T. By a result of Tarski, this is the case for PA, ZF, and many other theories
which arise in the foundations of mathematics.

We now introduce strong reducibility, a variant of weak reducibility.

Definition 2.6. For P,(Q C w“, we say that P is strongly reducible to Q,
abbreviated P <, @, if there exists a partial recursive functional ® : Q — P, i.e.,
a partial recursive functional ® from w* to w* such that the domain of definition
of @ includes @ and for all g € Q we have ®(g) € P. This notion was introduced
by Medvedev [27] and has sometimes been called Medvedev reducibility. See also
Rogers [30, Section 13.7]. Clearly <; is a reflexive, transitive relation on the
powerset of w®.

Remark 2.7. Thus strong reducibility is a uniform variant of weak reducibility.
Note that P <; @ implies P <,, @), but the converse often fails. Later we shall
see an analogy

weak reducibility / strong reducibility =
Turing reducibility / truth table reducibility.
See Remark 3.9 below.

Definition 2.8. We define strong degrees in terms of <;, just as weak degrees
were defined in terms of <,, in Definition 2.3.

Explicitly, we say that P, Q C w* are strongly equivalent, or Medvedev equiv-
alent, abbreviated P =, @, if P <; Q and @ <, P. Clearly =, is an equivalence
relation on the powerset of w*. The equivalence classes are called strong degrees,
or Medvedev degrees. The strong degree of P is denoted deg,(P). We use Ds to
denote the set of strong degrees. Thus we have

deg,(P) ={Q Cw” | P = Q}

and
Dy = {deg,(P) | P C w*}.

We partially order D, by putting deg,(P) < deg,(Q) if and only if P <, Q.
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Remark 2.9. We are mainly interested in weak reducibility and weak degrees.
We discuss strong reducibility and strong degrees for technical reasons only.

Theorem 2.10. The lattices of weak degrees and strong degrees, D,, and Dy,
are distributive lattices with a bottom element.

Proof. The least upper bound operation for weak or strong reducibility is given
by

PxQ={faglfePge}
The greatest lower bound operation for weak reducibility is given by PUQ. The
greatest lower bound operation for weak or strong reducibility is given by

P+Q={0)"f[fePru{(1)7g]geQ}

It is straightforward but instructive to check that the weak degrees form a
distributive lattice under these operations. Similarly for the strong degrees.

The bottom element of D,, is 0 = deg,, (w*), and similarly for D,. Actually,
the 0 of D,, and the 0 of Dy are identical, namely

0 = {P C w* | P contains a recursive member}.
O

Theorem 2.11. In both D,, and Ds, the bottom element O is meet irreducible,
i.e., it is not the greatest lower bound of two nonzero degrees.

Proof. This is obvious, because P 4+ @ (or P U Q) contains a recursive member
if and only if at least one of P and @) contains a recursive member. O

Theorem 2.12. Dr is canonically embeddable into D, and into Ds. The em-
beddings preserve order and least upper bound, and carry 0 to 0.

Proof. The embedding of Dr into D,, is given by deg,(X) — deg, ({X}), and
similarly for D,. Here {X} denotes the singleton set whose unique element is
X. We have X <7 Y if and only if {X} <,, {Y}, if and only if {X} <, {YV}.
Moreover, {X} x {Y} ={X @ Y}. O

Theorem 2.13. D, is a complete distributive lattice.

Proof. 1t is straightforward to check that D,, under < is canonically isomorphic
to the partial ordering of upward closed subsets of Dy under reverse inclusion.
This is clearly is a complete lattice ordering. The isomorphism is given by

deg,,(P) — {degr(g) | P <w {g}}. O
We now compare the Baire space, w*, to the Cantor space, 2.

Definition 2.14. P,Q C w* are recursively homeomorphic if there exist one-
to-one, onto, partial recursive functionals ® : P — @Q and =1 : Q — P.

Theorem 2.15. For each P C w® there exists P* C 2“ such that P is recur-
siwely homeomorphic to P*. It follows that P =4 P*, hence P =,, P*.
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Proof. Identifying subsets of w with their characteristic functions in 2, let
P* ={{2m3" | f(m) =n}| f € P}. Compare Theorem 1.11. O

Remark 2.16. In view of Theorem 2.15, subsets of 2% and subsets of w“ are
identical as to their weak and strong degrees. Compare Remark 1.12. Thus we
may write

Dy = {deg,(P)| P <2}
and similarly for D;.

Remark 2.17. On the other hand, the spaces 2 and w* are different in some
ways. For instance, 2% is compact while w* is not compact. Furthermore, the
differences will be important to us. In particular, we shall see that the lattice
of weak degrees of nonempty I19 subsets of 2 has a top element, but this is not
the case for w*. See Section 4 below.

Remark 2.18. Our main object of study will be the lattice P,, of weak degrees
of nonempty I subsets of the Cantor space, 2¢. See Definition 3.7 below. We
mention I1{ subsets of w* for technical reasons only.

Remark 2.19. Sorbi [43] gives a general survey of the lattices D,, and Dy of
all weak and strong degrees. However, Sorbi does not discuss the sublattices P,
and Py of weak and strong degrees of nonempty 19 subsets of 2. The explicit
study of P,, and Py began only recently, in 1999, with Simpson [38].

3 Trees and II{ Sets

Definition 3.1. A predicate R C w* X w is said to be recursive if its charac-
teristic function x g : w* x w — {0, 1}, given by

B 1if R(f,n),
XR(fvn) - { 0 1f—|R(f,n),

is a recursive functional.

Definition 3.2. A set P C w¥ is said to be I1{ if there is a recursive predicate
R C w¥ x w such that

P={few’|VYnR(f,n)}

Example 3.3. Let T be a consistent, recursively axiomatizable theory. As in
Example 2.5, let Pr be the set of (characteristic functions of) completions of T'.
It is easy to see that Pr is a nonempty I1J subset of 2*. Thus weak and strong
reducibility can be used to compare such theories.

In more detail, let B(T') be the Lindenbaum algebra of T, i.e., the Boolean
algebra of sentences in the vocabulary of T" modulo provable equivalence over
T. Thus B(T) is a recursively presented Boolean algebra, i.e., the quotient of
a free recursive Boolean algebra modulo a recursively enumerable ideal. It can
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be shown that Pr is (recursively homeomorphic to) the Stone space of B(T).
Thus we have an effective version of Stone Duality, with nonempty II{ subsets
of 2% as the Stone spaces. If T} and T» are two such theories, then recursive
homomorphisms

h: B(T1) — B(T3)

are in canonical one-to-one correspondence with recursive functionals
P . PT2 — I:JT1 .

In particular, B(Ty) is recursively isomorphic to B(7?) if and only if Pp, is
recursively homeomorphic to Pr,.

Remark 3.4. Conversely, one can show that every nonempty I1{ subset of 2¢ is
recursively homeomorphic to Pr for some consistent, recursively axiomatizable
theory T'. See Theorem 3.18 and Remark 3.19 below.

Remark 3.5. Many other interesting examples of II{ subsets of 2¢ arise from
logic, algebra, analysis, geometry, combinatorics, computability theory, etc.
There is a large literature on this subject. See for instance Cenzer/Remmel
[8] and Simpson [39, Chapter IV and Section VIII.2].

Remark 3.6. If P and Q are II{ subsets of 2¥, then P x Q, PUQ, P+ Q are
19 subsets of 2¢. Thus the weak degrees of nonempty II{ subsets of 2 form
a sublattice of the lattice of all weak degrees. Similarly for strong degrees, and
similarly for subsets of w*.

Definition 3.7. We use P, to denote the set of weak degrees of nonempty I19
subsets of 2¢. Thus P,, is a countable sublattice of D,,. Similarly Ps, the set
of strong degrees of nonempty I19 subsets of 2, is a countable sublattice of D;.

Remark 3.8. The countable distributive lattices P,, and P, are known to have
a rich structure.

Binns/Simpson [4, 6] have shown that every countable distributive lattice is
lattice embeddable in P,,. A similar conjecture for P, remains open, although
partial results in this direction are known. A special case is Corollary 9.4 below.
Binns [4, 5] has shown that for every b > 0 in P,, there exist by, by < b in P,
such that b = sup(by, b2), and similarly for Ps. Cenzer/Hinman [7] have shown
that, for all a,b € P, such that a < b, there exists ¢ € Py such that a < ¢ < b.
A similar conjecture for P,, remains open. Binns [4, 5] has improved the result
of Cenzer/Hinman [7] by showing that, for all a,b € P, such that a < b, there
exist by, by < b in P, such that a < by, by and b = sup(by, bs).

These recent results for P,, and Ps are proved by means of priority argu-
ments. They invite comparison with the older, known results for r. e. Turing
degrees in Sacks [31] and Soare [42].

Remark 3.9. It is known that P; behaves somewhat differently from P,,. To
bring out one of the differences, let P,Q be II{ subsets of 2* with P <, Q.
Thus we have a recursive functional ® : Q — P. Using compactness of 2¥, we
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can find a total recursive functional ® : 29 — 2¢ which extends P, ie., =
the restriction of ® to @. Thus, for every Y € @, ®(Y) is not only < Y but
also <4 Y, where <y denotes truth table reducibility. A general discussion of
truth table reducibility is in Rogers [30]. See also Simpson [35, Section 3] and
the proof of Lemma 6.5 below. Thus we have an analogy

weak reducibility / strong reducibility =
Turing reducibility / truth table reducibility.

In addition, it is known that every nonzero weak degree in P,, includes infinitely
many distinct strong degrees in P,. See Simpson/Slaman [41].

We now present a useful characterization of I1{ sets, in terms of trees.

Definition 3.10. We use Seq to denote the set of finite sequences of natural
numbers. We use p, 0,7, ... to denote members of Seq. The length of o € Seq
is denoted lh(c). The concatenation o followed by 7 is denoted o~7. Thus
Ih(c™7) =1h(o) + 1h(7). Given f € w*¥ and n € w, we put

f[n]:<f(0)7f(1)a’f(n_1)>

Thus f[n] € Seq and 1h(f[n]) = n. We write o C f to mean that o = f[n] for
some n. Given 7 € Seq and n < lh(7), we put

T[n] = <T(O)a 7—(1); cee 7T(n - 1)>
We write o C 7 to mean that ¢ = 7[n] for some n < lh(7).
Definition 3.11. For e,m,n,t € w and o € Seq, we write
{e}7(m) =n

to mean that {e}/(m) = n for some (or any) f € w* such that f D o, via a Tur-
ing computation which halts in at most ¢ steps and uses only oracle information
from o. Compare Definition 1.3.

Lemma 3.12. We have:
1. If {e}{[sl (m)=n andt' >t and s’ > s, then {e},{,[sl] (m) =n.
2. {e}f (m) = n if and only if {e}f[s] (m) =n for some s,t € w.
3. {e}(m) = n if and only if {e}f[s] (m) =n for some s € w.
4. The relations {e}7(m) =n and {e}7(m) | are recursive.
Proof. Straightforward. O

Definition 3.13. A tree is a set T C Seq such that, for all 7 € T and all
n < lh(7), 7[n] € T. A path through T is a function f € w* such that, for all
new, fln]eT.
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Theorem 3.14. A set P C w® is I1{ if and only if there exists a recursive tree
T C Seq such that

P={few“]| f is a path through T'}.

Proof. Clearly the set of paths through a recursive tree is II{. Conversely,
given a I1Y set P = {f | Vn R(f,n)}, let e be an index of the partial recursive
functional ®(f, m) ~ least n such that = R(f,n). Then P = {f | ®(f,0) 1} =
{f | {e}¥(0) 1}. Putting T = {0 | {e}(0)(0) T} we see that T"is a recursive
tree and P = {paths through T'}. O

Definition 3.15. We use Seq, to denote the set of finite sequences of 0’s and
1’s. Since Seq, C Seq, the notations introduced in Definitions 3.10 and 3.11

apply.

Definition 3.16. A tree T is said to be bounded if for each n € w there are
only finitely many o € T such that lh(c) = n. Note that Seq, is a bounded
tree, while Seq is an unbounded tree.

Corollary 3.17. A set P C 2% is I1Y if and only if there exists a recursive tree
T C Seq, such that

P={X e€2¥| X is a path through T'}.
Moreover, P is nonempty if and only if T is infinite.

Proof. The first assertion is a special case of Theorem 3.14. The second assertion
follows from compactness of 2¢, in the form of Ko6nig’s Lemma. Namely, a
bounded tree has a path if and only if it is infinite. O

We now use Corollary 3.17 to obtain the converse of Example 3.3.
Theorem 3.18.

1. If T is a consistent, recursively axiomatizable theory, then Pr, the set of
completions of T, is a nonempty 11\ subset of 2.

2. Conversely, if P is a nonempty 119 subset of 2%, we can find a consistent,
recursively axiomatizable theory, T, such that P is recursively homeomor-
phic to Pr.

Proof. Part 1 has already been noted in Example 3.3. For part 2, let S be an
infinite recursive tree such that P = {paths through S}. We use S to construct
a theory T in the propositional calculus with atoms A,,, n € w. Writing A = A
and A = = A, the axioms of T are all sentences of the form - (Al NAP A A
A}F) where (ig,i1,...,i) € Seqy \ S. Then P is recursively homeomorphic to

Pr, via X — the completion of T' with axioms Aff(n), n e w. O

Remark 3.19. Surprisingly, it is known that every I subset of 2¢ is recursively
homeomorphic to Pr for some finitely axiomatizable theory T in the predicate
calculus. See Peretyatkin [29)].
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We now discuss I1§ subsets of w* and compare them to I19 subsets of 2*.

Definition 3.20. A set P C w* is said to be recursively bounded if there exists
a recursive function g € w* such that for all f € P, f(n) < g(n) for all n.

Remark 3.21. Clearly any subset of 2“ is recursively bounded, viz., by the
constant function An.2. The next theorem implies that, up to recursive home-
omorphism, the study of recursively bounded II{ subsets of w* is equivalent to
the study of II{ subsets of 2.

Theorem 3.22. For each recursively bounded 119 set P C w®, we can find a
19 set P* C 2% such that P is recursively homeomorphic to P*. It follows that
P =, P*, hence P =, P*.

Proof. Define P* as in the proof of Theorem 2.15. It is straightforward to show
that, if P is 11 and recursively bounded, then P* is I19. O

Remark 3.23. Conversely, if P C 2¢ is I1{, then for any recursive functional
®: P — w*, the range {®(f) | f € P} is I1{ and recursively bounded. This is
a consequence of compactness of 2¢.

Remark 3.24. By Theorem 3.22, the weak degrees of recursively bounded I1{
subsets of w“ belong to P,, and similarly for strong degrees. On the other
hand, there are plenty of nonempty II{ subsets of w® whose weak degrees do
not belong to P,,.

Example 3.25. It is known from hyperarithmetical theory (see Sacks [32, Part
A] or Simpson [39, Section VIII.3]) that for any hyperarithmetical X € 2¢ there
exists a hyperarithmetical g € w® such that X <p ¢ and the singleton set
{g} Cw¥is Y. If g is not recursive, the GKT Basis Theorem (see Simpson [39,
Section VIIL.2]) implies that deg,,({g}) £ P for any nonempty I} set P C 2.

Example 3.26. Another interesting I19 subset of w® is

DNR = {f € w* | ¥n f(n) # {n}(n)},

i.e., the set of f : w — w which are diagonally non-recursive. We shall comment
more on this later. See Corollary 7.3 and Remark 7.5 below.

4 Weak and Strong Completeness

Definition 4.1. A nonempty II set P C 2¥ is said to be weakly complete, or
Muchnik complete, if every nonempty II{ subset of 2¢ is weakly reducible to P.

Definition 4.2. A nonempty II9 set P C 2¢ is said to be strongly complete, or
Medvedev complete, if every nonempty II{ subset of 2¢ is strongly reducible to
P.

Remark 4.3. We use 1 to denote the weak degree of any nonempty I1{ subset
of 2¢ which is weakly complete. Thus 1 is the top element of P,,. Similarly for
strong degrees and Ps.
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Example 4.4. The following I1{ subsets of 2¢ are known to be strongly com-
plete, hence weakly complete.

1. P = {completions of PA}. Instead of PA we could use any effectively
axiomatizable, effectively essentially undecidable theory. This is related
to the Godel/Rosser Theorem. See also Scott/Tennenbaum [33].

2. P ={f €2¥]| f separates A and B}, where A = {n | {n}(n) ~ 0} and
B ={n|{n}(n) ~1}. See Jockusch/Soare [20].

3. We can also give an explicit, recursion-theoretic construction of a I19 set
P with the desired property. Namely, P = [[°2, Pt where P is the

e

nonempty I1{ subset of 2% indexed by e. See Simpson [35, Lemma 3.3].

Theorem 4.5 (Simpson 2000). Any two strongly complete T subsets of 2
are recursively homeomorphic.

Proof. The proof is by an effective back-and-forth argument, using the Recur-
sion Theorem. See Simpson [35, Section 3]. It is analogous to the proof of
Myhill’s result that any two creative, recursively enumerable subsets of w are
recursively isomorphic. Myhill’s result is expounded in Rogers [30]. O

Corollary 4.6. A nonempty 11§ subset of 2¥ is strongly complete if and only if
it is recursively homeomorphic to the set of completions of PA.

The proof of Theorem 4.5 also gives the following.

Corollary 4.7. Let P and Q be nonempty I1{ subsets of 2¥. If P is strongly
complete, then there is a recursive functional ® : P — Q which maps P onto @,

ie., Q={2(f)| f e P}.
Proof. See Simpson [35, Section 3]. O

The following example shows that strong completeness is not the same as
weak completeness.

Example 4.8 (Jockusch 1989). For k > 2 let DNRy, be the set of functions
f:w — {1,...,k} which are DNR. It is easy to see that the sets DNRy,
k=2,3,..., are I1Y and recursively bounded, and that DNRy is strongly com-
plete. Jockusch [19] has shown that the the sets DNRy, k = 2,3, ... are weakly
complete but of different strong degrees. Thus we have DNRy =,, DNR3 =, . ..
yet DNRy >5 DNR3 >4 .. ..

An interesting relationship between weak and strong reducibility is given by
the following theorem.

Theorem 4.9 (Simpson 2001). Let P,Q C 2% be nonempty 119 sets. If
P <, Q, then there exists a nonempty 11§ set Q' C Q such that P <, Q'.

Proof. We shall prove this later, as a consequence of the Almost Recursive Basis
Theorem. See Theorem 6.6. O
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Corollary 4.10. If Q C 2 is 11 and weakly complete, then there is a 11 set
Q' C Q such that Q' is strongly complete.

Definition 4.11. P,Q C w* are said to be Turing degree isomorphic if there
exists a Turing-degree-preserving one-to-one correspondence between P and Q.
Clearly recursive homeomorphism implies Turing degree isomorphism.

Theorem 4.12 (Simpson 2001). Any two weakly complete T subsets of 2
are Turing degree isomorphic.

Proof. This follows easily from Theorem 4.5 and Corollary 4.10. O

Corollary 4.13. A nonempty 119 subset of 2¢ is weakly complete if and only if
it is Turing degree isomorphic to the set of completions of PA.

Corollary 4.14. Any two nonempty 11\ subsets of U;OZO DNRy are Turing de-
gree isomorphic.

Corollary 4.15. If P is weakly complete, then the set of Turing degrees of
members of P is upward closed.

Proof. Let P be weakly complete. Put Q = P x 2¢. Clearly @ is weakly
complete, and the set of Turing degrees of members of @ is upward closed. By
Theorem 4.12, P and @ are Turing degree isomorphic. o

Corollary 4.16 (Solovay). The set of Turing degrees of completions of PA is
upward closed.

5 1-Randomness

In this section we present an explicit, natural example of a weak degree in P,
which is strictly between 0 and 1. Our example is based on Martin-Lgf’s theory
of randomness.

We use the “fair coin” probability measure on 2¢. Thus for all n € w we
have

(X €27 X(n) = 0}) = p({X €2 X(n) = 1}) = 1/2.

Definition 5.1. An effective null Gs is a set S C 2% of the form S = (" U,
where U,,, n € w, is a recursively indexed sequence of ©¢ sets such that u(U,,) <
1/2™ for all n.

Definition 5.2. X € 2¢ is 1-random if X ¢ S for all effective null G5 sets S.
The set of 1-random X € 2% is denoted R;. Clearly p(Ry) = 1.

Theorem 5.3 (Martin-Lof 1966). The union of all effective null G sets is
an effective null Gs set.

Proof. This result is due to Martin-Lef [26]. The proof is by a diagonal argu-
ment. See also Kucera [22]. O
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Corollary 5.4. 2¥\ Ry is an effective null Gs set. Hence Ry is .
Corollary 5.5. R; = UZOZO P,, where P,, n € w, is a sequence of 11\ sets.

Theorem 5.6. Let Q C 2 be I1Y of measure 0. Then Q is an effective null G's
set.

Proof. Straightforward. O

Corollary 5.7. Let Q C 2% be I1Y. We have u(Q) > 0 if and only if QN Ry # 0.
In this case we actually have Q@ N Ry O P # 0, where P is 1Y and p(P) > 0.

Theorem 5.8 (Kuéera 1985). Let Q C 2% be 119 with pu(Q) > 0. Then for
all 1-random X € 2¥ we have that X*) € Q for some k € w. Here X (n) =
X(k+mn) for alln € w.

Proof. See Kucera [22]. Let T be a recursive tree such that @ is the set of paths
through T'. Let T be the set of all 77 (i) € Seq, such that 7 € T and 77 (i) ¢ T.
Let Q2 be the set of paths through the tree T2 = TU {o"7 | 0 € T,7 € T}.
Note that Q2 is II{ and p(Q?) = 1 — (1 — u(Q))?. Define Q" similarly for all
n > 1. Since Q™ is IIY and p(Q™) = 1 — (1 — p(Q))", we have that 2*\ |~ , Q"
is an effective null Gs set. Hence X € Q™ for some n. It follows that X(¥) € Q
for some k. O

Corollary 5.9. Let Q C 2 be 11 with u(Q) > 0. Then Q <, Ry.
Corollary 5.10. Let Q be a nonempty 11 subset of Ry. Then Q =, R;.

Corollary 5.11. Among all weak degrees of 1Y sets Q C 2% with u(Q) > 0,
there is a largest one, and it is the same as the weak degree of Ry. Call this
weak degree ry.

Theorem 5.12. Let A, B C w be recursively inseparable. Then
p({X €2¥|3Y <7 X (Y separates A, B)}) = 0.
Proof. Not difficult. See Jockusch/Soare [20]. O

Corollary 5.13. The weak degree r1 = deg,,(R1) € Pw of Corollary 5.11 is
not weakly complete. We have 0 <r; < 1.

Remark 5.14. More generally, for all weak degrees a € D,,, if sup(a,ry) > 1
then a > 1. This result is due to Simpson [40].

Remark 5.15. The weak degree r; is the first explicit, natural example of
a weak degree in P,, strictly between 0 and 1. This is especially interesting
because no explicit, natural examples of r. e. Turing degrees strictly between 0
and 0’ are known. See Simpson [38].
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6 The Almost Recursive Basis Theorem

Definition 6.1. X is almost recursive (a.k.a., hyperimmune-free) if, for each
function f : w — w recursive in X, there exists a recursive function ¢ : w — w
such that f(m) < g(m) for all m € w.

The following theorem is from Jockusch/Soare [20]. We call it the Almost
Recursive Basis Theorem.

Theorem 6.2. Let P be a nonempty 119 subset of 2. Then there exists X € P
such that X s almost recursive.

Proof. Define a sequence of nonempty II{ sets P =Py D P, D --- D P, D ---
as follows. Put Py = P. If 3m (3X € P,){n}*(m) 1, fix such an m and put
Poy1 ={X € P, | {n}*(m) 1}. Otherwise, put P,;1 = P,. Clearly there is a
unique X € ()~ , P,. By Remark 3.23, X is almost recursive. o

Corollary 6.3. There exists a completion of PA which is almost recursive.
Corollary 6.4. There exists a 1-random X € 2* which is almost recursive.

Lemma 6.5. Suppose X is almost recursive and X >p Y. Then Y is truth
table reducible to X. In particular, there exists a total recursive functional
D : 2% — 2% such that P(X) =Y.

Proof. Let e be such that Y = {e}¥. Define f : w — w by f(m) = the least
s such that {e}f[s] (m) |. Clearly f <r X. Let g : w — w be recursive such
that f(m) < g(m) for all n. Define a truth table functional ® : 2¢ — 2¥ by
putting ®(Z)(m) = {e}gZ([rgn()m)] (m) if this is defined, and ®(Z)(m) = 0 otherwise.
Clearly ®(X) =Y. O

The following theorem from Simpson [40] provides an interesting relationship
between <,, and <.

Theorem 6.6. Let P,Q C 2% be nonempty I\ sets. If P <,, Q, then there is
a nonempty 119 set Q' C Q such that P <, Q'.

Proof. Assume P <,, Q. By Theorem 6.2 let Y € @ be almost recursive. Let
X € P be such that X <r Y. By Lemma 6.5 let ® : 2% — 2“ be a truth table
functional such that ®(Y) = X. Put Q' = QN®~1(P). Then Q' is a nonempty
119 subset of Q, and P <, Q' via ®. O

Corollary 6.7. Let X be 1-random and almost recursive. Then there is no
completion of PA which is <p X.

Proof. Otherwise, by the proof of Theorem 6.6, there would be a strongly com-
plete 1Y set Q C 2% with x(Q) > 0. This would contradict Theorem 5.12. O
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7 The X — IIY Embedding Theorem

The next theorem, due to Simpson [40], tells us that the weak degrees of many
naturally occurring mass problems belong to P,,, even when they do not natu-
rally occur as recursively bounded 19 sets.

Definition 7.1. A set S C w“ is said to be X9 if there exists a recursive
predicate R C w® x w3 such that

S ={f €w*|IngVnz Ing R(f,n1,n2,n3)}.

A set P C w¥ is said to be I19 if its complement w* \ P is 3. One defines 9
and II9 similarly for all k > 1. See Rogers [30, Chapter 15].

Theorem 7.2. If S C w® is X9, then for all nonempty 11 sets P C 2 we can
find a 119 set Q C 2% such that Q =, PUS.

Proof. First use a Skolem function technique to reduce to the case where S is
a I1Y subset of w*. Namely, replace S by the set of all (k)" (f @ g) € w* such
that Vm (g(m) = the least n such that R(f,k, m,n)). Clearly this set is =, S
and I19. After that, let T's be a recursive subtree of Seq such that S is the set
of paths through Ts. Let Tp be a recursive subtree of Seq, such that P is the
set of paths through Tp. We may assume that, for all 7 € Ts and n < 1h(7),
T(n) > 2. Define T to be the set of sequences p € Seq of the form

00" (no) o1 (n1)” - T (1) "o,

where (ng,n1,...,nx—1) € Ts, 00,01,...,0k € Tp, and p(m) < m + 2 for all
m < lh(p). Thus Tq is a recursive subtree of Seq. Let @ C w* be the set of
paths through Tg. It is not hard to see that Q =, P U S. Note that Q is II{
and recursively bounded. Hence by Theorem 3.22 there is a II{ set Q* C 2v
which is recursively homeomorphic to Q. O

Corollary 7.3. There is a H(l) set D C 2% such that D =, DNR.
Proof. Apply Theorem 7.2 with P = DNR, and S = DNR. O

Remark 7.4. Put d = deg, (D) = deg,,(DNR). By Kumabe [21] (see also
Ambos-Spies/Kjos-Hanssen/Lempp/Slaman [2]) we have

0<d<r; <1.

The weak degrees 1, r1, and d correspond to the system WKLy and two of its
subsystems which have arisen in the foundations of mathematics. See respec-
tively Simpson [39], Yu/Simpson [45], and Giusto/Simpson [18].

Remark 7.5. Jockusch [19] has shown that the following mass problems are
pairwise Turing degree isomorphic, hence weakly equivalent.

1. DNR = {f € w¥ | f is diagonally non-recursive, i.e., Ve f(e) % {e}(e)}.
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2. FPF = {f € w¥ | f is fixed point free, i.e., Ve Im {f(e)}(m) % {e}(m)}.

3. EI={A Cw| A is effectively immune}.
This means that A is infinite and, given an index of an r. e. set C C A,
we can effectively find a finite upper bound for the cardinality of C.

4. EBI = {A Cw | A is effectively bi-immune}.
This means that both A and w \ A are effectively immune.

Definition 7.6. A member of 2“ is said to be 2-random if it is 1-random relative
to 0, the Turing degree of the Halting Problem. The set of 2-random X € 2%
is denoted Ry. We write ry = deg,, (R2).

Corollary 7.7. There is a 119 set R C 2 such that R} =, Rs U P, where
P = {completions of PA}. Put ry = inf(re, 1) = deg,, (R3).

Proof. Relativizing Corollary 5.4 we see that Ry is a 39 subset of 2¢. Our result
then follows by Theorem 7.2. O

Theorem 7.8. If X is 2-random, then X is not almost recursive.

Proof. Martin [24] has shown that pu({X € 2 | X is almost recursive}) = 0.
Our theorem follows from an analysis of Martin’s proof. See also the exposition
of Martin’s result in Dobrinen/Simpson [11]. O

Theorem 7.9. We have 0 <d <r; <rj <1.

Proof. From Remark 7.4 we have 0 < d < ry, and obviously r; < rj < 1.
Theorem 5.12 implies that r5 < 1. The fact that r1 < r3 follows from Corollaries
6.4 and 6.7 and Theorem 7.8. O

Remark 7.10. Additional examples of naturally occurring mass problems whose
weak degrees belong to P, are in Simpson [40].

8 Embedding the R. E. Turing Degrees

Recall that Ry is the upper semilattice of Turing degrees of recursively enu-
merable subsets of w, and P, (Ps) is the lattice of weak (strong) degrees of
nonempty 119 subsets of 2*. See Remark 1.17 and Definition 3.7.

In this section we use the ¥J — 119 Embedding Theorem 7.2 to embed Ry
into P,,. We do not know whether there exists an embedding of Ry into Ps.

Theorem 8.1. Let A € 2% be AY, i.e., degy(A) <7 0'. Then there is a 119 set
Py C 2% such that Py =, P U{A}, where P = {completions of PA}. We have
PA@B =w PA X PB,

Proof. The first statement follows from Theorem 7.2 since the singleton set {A}
is TI9. The second statement is straightforward. (]
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Theorem 8.2 (Arslanov Completeness Criterion). Let A C w be recur-
siwely enumerable. If f € DNR and f <p A, then A is Turing complete, i.e.,
degp(A4) =0

Proof. See Soare’s book [42, Section V.5]. Note that we are identifying A C w
with its characteristic function x4 € 2“. O

Theorem 8.3. Let A, B C w be recursively enumerable. Then A <r B if and
only if P4 <4 Pp.

Proof. Obviously A <p B implies P4 <,, Pg. For the converse, recall that P
is strongly complete, hence recursively homeomorphic to DNRs. In particular,
for all X € P there is a DNR function f <7 X. Assume now that P4 <, Pg.
In particular we can find X € PU{A} such that X <p B. If X € P, then by
the Arslanov Completeness Criterion, B is Turing complete, hence A <p B. If
X ¢ P, then X = A, hence again A <p B. O

Remark 8.4. Thus our embedding of the r. e. Turing degrees into the weak
lattice Py, is given by degyp(A) +— deg, (P U {A}), where P = {completions
of PA}. The embedding is one-to-one, order preserving, least upper bound
preserving, and carries 0 to 0 and 0’ to 1.

Remark 8.5. Instead of P = {completions of PA}, we could use any nonempty
1Y set P C 2“ such that DNR <,, P. Compare Corollary 7.3. Thus, for any
c € Py such that ¢ > d = deg,,(DNR), we obtain an embedding of the r. e.
Turing degrees into {a € P,, | 0 < a < ¢}. The embbedding is one-to-one, order
preserving, least upper bound preserving, and carries 0 to 0 and 0’ to c.

9 A Priority Argument

In this section we sketch the construction of a H(l) set P C 2% with several
interesting properties. The construction uses a priority argument.

Definition 9.1. A TI{ set P C 2 is said to be thin if, for all TI{ sets Q C P,
there is a finite set o1, ...,0, € Seq, such that

Q={XeP|lonCXV:---Vo, CX}.

This is equivalent to saying that, for all TI{ sets @ C P, P\ Q is I1{. See also
references [25, 12, 13, 9].

Definition 9.2. A family of Turing degrees {a; | i € I} is said to be in-
dependent if for all finite {ig,i1,...,i,} C I, a;, < sup(a;,,...,a;, ) implies
19 € {il, R ,in}.

Theorem 9.3. We can construct a 119 set P C 2% with the following properties:
1. P is thin and of cardinality 2%°.

2. P has no recursive members.
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3. The Turing degrees degp(X), X € P, are independent.

4. For all X € P, putting a = deg(X), we have a’ = sup(a,0’).
Here a' denotes the Turing jump of a.

Furthermore, given a I1§ set Q C 2% with no recursive members, we can arrange
that no member of P Turing computes a member of Q.

Sketch of proof. We follow Binns/Simpson [6] building on the techniques of
Martin/Pour-El [25] and Jockusch/Soare [20, Theorem 4.7].

By a treemap we mean a function h : Seqy, — Seq, such that h(o)™ (i) C
h(o™(i)) for all o € Seq,, i € {0,1}.

Starting with hy = the identity map, we construct a recursive sequence
of recursive treemaps hg, s € w, which are nested in the sense that for all s
and all 0 € Seq, there exists 7 € Seqy such that heyi(o) = hg(r). After
presenting the recursive construction, we argue that, for all o € Seq,, the limit
h(o) = lim hs(o) exists and is finite. If follows that h = lim, hs is a treemap,
and we define

P ={X €2¥|Vn (3o of length n) h(c) C X}.

Clearly P will be 119 and of cardinality 2%°.
In order to insure that P is thin, we arrange that for all e € w and all
o € Seqs of length e, {e}*(?)(0) | “if possible”. Then for all X € P we have

HX = {e| (3o of length e) ({6}1};(&)(0))

so HX < H @ X and this gives property 4. Now, given a II{ set Q C 2%, let e
be such that Q = {X | {e}*(0) T}. (See the proof of Theorem 3.14.) Then

(0) | and h(o) C X))},

Q={X € P| (Jo of length ¢) ({e}}\(,(0) T and h(0) C X)},

and this gives thinness.

The strategy for property 3 is similar. For example, to insure X £ Y for
all X, Y € P with X # Y, we arrange that for all e and all 0,7 € Seq, of length
e with o # 7, 3m < 1n(h(0)) ({e}(nry) () L # hlo)(m)) “if possible’.

The final property is obtained by means of a Sacks preservation strategy.
See Binns/Simpson [6]. O

Corollary 9.4. Every finite distributive lattice is lattice embeddable in P, and
mn Ps.

Proof. First note that any finite distributive lattice is lattice embeddable in
the free distributive lattice on n generators, for sufficiently large n. Now let
P be as in Theorem 9.3, and let Py,..., P, be nonempty, pairwise disjoint, I1{
subsets of P. In view of property 3, the weak or strong degrees of Py,..., P,
are independent and hence freely generate a free distributive lattice. Details are
in Binns/Simpson [6]. O
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Corollary 9.5. For any b > 0 in Py, or Ps, every finite distributive lattice is
lattice embeddable in the interval 0 < a < b.

Proof. Let Q C 2* be IIY with b = deg,,(Q) or deg,(Q) as the case may be.
Let P be as in Theorem 9.3 such that no member of P Turing computes a
member of (). Proceed as in the proof of Corollary 9.4, replacing P, ..., P, by
P+Q,...,P,+ Q. O

Remark 9.6. By Theorem 9.3, let P be a nonempty thin IIY subset of 2
with no recursive members. Then P is of measure 0, and in fact, deg, (P) is
incomparable with r;. These results are due to Simpson [40].

Remark 9.7. By Theorem 9.3 and Remark 3.19, let T be a consistent, finitely
axiomatizable, essentially undecidable theory such that Ppr is thin. Then any
recursively axiomatizable theory extending T with the same vocabulary as T is
finitely axiomatizable. Compare Martin/Pour-El [25].
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