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Abstract

A mass problem is a set of Turing oracles. If P and Q are mass
problems, we say that P is weakly reducible to Q if every member of Q
Turing computes a member of P . Two mass problems are said to be weakly
equivalent if each is weakly reducible to the other. A weak degree is an
equivalence class under weak reducibility. The weak degrees are partially
ordered in the obvious way, by weak reducibility. This partial ordering is
easily seen to be a complete distributive lattice. We focus on the countable
sublattice obtained by restricting to mass problems of the form P = the set
of all paths through T , where T is an infinite computable subtree of the full
binary tree. We present natural examples of such mass problems arising
from mathematical logic, Martin-Löf randomness, effective immunity, and
the Arslanov Completeness Criterion. We also present artificial examples
constructed by means of priority arguments.

This is the lecture notes that I prepared for my series of five lectures at the
Summer School and Workshop on Proof Theory, Computation and Complexity,
held at the Technical University of Dresden, June 23–July 4, 2003. See

http://www.ki.inf.tu-dresden.de/~guglielm/WPT2/.
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1 Turing Degrees

Definition 1.1. We use ω to denote the set of natural numbers:

ω = {0, 1, 2, . . .}.
We use ωω to denote the set of total functions from ω into ω:

ωω = {f | f : ω → ω}.
We use 2ω to denote the set of total functions from ω into {0, 1}:

2ω = {X | X : ω → {0, 1}}.
The space ωω with the obvious product topology is called Baire space. Its
subspace 2ω is called Cantor space. We use f, g, h, . . . to denote points of the
Baire space, and X,Y, Z, . . . to denote points of the Cantor space.

Remark 1.2. We sometimes identify subsets of ω with their characteristic
functions in 2ω. The characteristic function of A ⊆ ω is χA ∈ 2ω given by

χA(n) =

{
1 if n ∈ A,
0 if n /∈ A.
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Definition 1.3. For e,m, n ∈ ω and g ∈ ωω, we write

{e}g(m) = n

to mean that e is the Gödel number of a Turing machine which, if started with
input m (on the input tape) and oracle g (on the auxiliary or oracle tape),
eventually halts with output n (on the output tape).

Remark 1.4. The idea of using an arbitrary, possibly non-computable member
of ωω as an oracle is due to Turing [44]. See also Rogers [30, Section 9.2].

Definition 1.5. According to Definition 1.3, each e ∈ ω gives rise to a partial
recursive functional Φ from ωω × ω to ω, given by Φ(g,m) ' {e}g(m). We
may also view Φ as a partial recursive functional from ωω to ωω, given by
Φ(g)(m) ' Φ(g,m) ' {e}g(m). In either case we say that e is an index of Φ.

Remark 1.6. Here ' denotes strong equality for expressions which may be
undefined. Thus E1 ' E2 if and only if E1, E2 are both undefined, or both
defined and equal. We write E ↓ to mean that E is defined. We write E ↑ to
mean that E is undefined.

Definition 1.7. For f, g ∈ ωω, we say that g Turing computes f , or f is
recursive in g, or f is Turing reducible to g, abbreviated f ≤T g, if Φ(g) = f
for some partial recursive functional Φ. Thus f ≤T g if and only if there exists
e ∈ ω such that {e}g(m) = f(m) for all m ∈ ω. Clearly ≤T is a reflexive,
transitive relation on ωω.

We say that f is Turing equivalent to g, abbreviated f ≡T g, if f ≤T g and
g ≤T f . Clearly ≡T is an equivalence relation on ωω.

Definition 1.8. The Turing degrees, or degrees of unsolvability, are the equiv-
alence classes of members of ωω under the equivalence relation ≡T . The Turing
degree of f ∈ ωω is denoted degT (f). We use DT to denote the set of Turing
degrees. Thus we have

degT (f) = {g ∈ ωω | f ≡T g}

and
DT = ωω/≡T = {degT (f) | f ∈ ωω}.

Definition 1.9. In Definition 1.3, if there is no oracle g, we write simply

{e}(m) = n.

Thus f ∈ ωω is said to be Turing computable, or recursive, if there exists e ∈ ω
such that {e}(m) = f(m) for all m ∈ ω.

Remark 1.10. We partially order DT by putting degT (f) ≤ degT (g) if and
only if f ≤T g. Under this partial ordering, DT is an upper semilattice, with
least upper bound operation given by f ⊕ g ∈ ωω, where

(f ⊕ g)(2n) = f(n), (f ⊕ g)(2n+ 1) = g(n),

for all f, g ∈ ωω. Moreover DT has a bottom element
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0 = degT (λn.0) = {f ∈ ωω | f is recursive}.
It can be shown that DT has no top element and is not a lattice.

We now compare the Baire space, ωω, to the Cantor space, 2ω.

Theorem 1.11. For each f ∈ ωω there exists X ∈ 2ω such that f ≡T X.

Proof. Let X be the characteristic function of {2m3n | f(m) = n}.

Remark 1.12. In view of Theorem 1.11, the Baire space ωω and the Cantor
space 2ω are identical as to Turing degrees. Thus we may write

DT = 2ω/≡T = {degT (X) | X ∈ 2ω}.
Remark 1.13. The idea behind Turing reducibility is that each non-recursive
(i.e., non-computable) X ∈ 2ω is regarded as an “unsolvable problem”, viz.,
the problem of computing X . Then Y ≤T X means that “the problem” Y is
“reducible” to “the problem” X in the sense that, if there were an oracle for
solving X , then, with the help of this oracle, we could solve Y . Thus degT (X),
the Turing degree of X , is a measure of the “unsolvability” of “the problem”
X . In particular, the Turing degree 0 corresponds to “solvable problems”, i.e.,
recursive members of 2ω.

Example 1.14. Turing’s original example of an unsolvable problem is the Halt-
ing Problem, i.e., the (characteristic function of the) set

H = {e ∈ ω | {e}(0) ↓}
= {Gödel numbers of Turing machines which eventually halt}.

The Turing degree of the Halting Problem is denoted 0′. Turing’s famous the-
orem on unsolvability of the Halting Problem amounts to saying that H is
nonrecursive, i.e., 0′ > 0.

In addition, it is known that there are infinitely many Turing degrees a in
the interval 0 ≤ a ≤ 0′. Moreover, the Turing degrees in this interval do not
form a lattice.

Definition 1.15. A set A ⊆ ω is said to be recursively enumerable, abbreviated
r. e., if A = {f(m) | m ∈ ω} for some recursive function f : ω → ω. In this case,
an index of A is just an index of f . A Turing degree is said to be recursively
enumerable if it is the Turing degree of (the characteristic function of) an r. e.
subset of ω. The set of r. e. Turing degrees is denoted RT .

Definition 1.16. An r. e. set C ⊆ ω is said to be Turing complete if for every
r. e. set A ⊆ ω we have A ≤T C. An r. e. Turing degree is said to be Turing
complete if it is the Turing degree of a Turing complete r. e. set.

Remark 1.17. It is known that the halting set H and its Turing degree 0′

are recursively enumerable and Turing complete. Moreover, if a and b are r.
e. Turing degrees, then so is their least upper bound, sup(a,b). Thus RT is a
countable upper semilattice with a top element, 0′, and a bottom element, 0.
It is known that RT is infinite and properly included in the interval 0 ≤ a ≤ 0′

in DT , and is not a lattice.
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Remark 1.18. More generally, for any Turing degree a = degT (X), define
a′ = degT (HX) where HX is (the characteristic function of)

HX = {e | {e}X(0) ↓},

the halting set relative to X . It is known that the Turing jump operator a 7→ a′

is well defined, because X ≤T Y implies HX ≤T HY . It is known that a′ > a,
and that a′ is r. e. relative to a and Turing complete relative to a.

Remark 1.19. The semilattice DT of all Turing degrees, and its subsemilattice
RT consisting of the r. e. Turing degrees, have been studied intensively for many
years. See Sacks [31], Rogers [30], Lerman [23], Simpson [36] [37], Soare [42].

2 Weak and Strong Degrees

Definition 2.1. A mass problem is a subset of ωω. We use, P,Q,R, . . . to
denote subsets of ωω.

Definition 2.2. For P,Q ⊆ ωω, we say that P is weakly reducible to Q, abbre-
viated P ≤w Q, if for each g ∈ Q there exists f ∈ P such that f ≤T g. (Recall
that ≤T is Turing reducibility.) The notion of weak reducibility was introduced
by Muchnik [28] and has sometimes been called Muchnik reducibility. Clearly
≤w is a reflexive, transitive relation on the powerset of ωω.

Definition 2.3. We say that P,Q ⊆ ωω are weakly equivalent, or Muchnik
equivalent, abbreviated P ≡w Q, if P ≤w Q and Q ≤w P . Clearly ≡w is an
equivalence relation on the powerset of ωω. The equivalence classes are called
weak degrees, or Muchnik degrees. The weak degree of P is denoted degw(P ).
We use Dw to denote the set of weak degrees. Thus we have

degw(P ) = {Q ⊆ ωω | P ≡w Q}

and
Dw = {degw(P ) | P ⊆ ωω}.

We partially order Dw by putting degw(P ) ≤ degw(Q) if and only if P ≤w Q.

Remark 2.4. The idea behind weak reducibility is that an arbitrary subset of
ωω may be regarded as a “mass problem”, i.e., a problem whose solution is not
necessarily unique. If P ⊆ ωω is viewed a mass problem, the “solutions” of P
are just the members of P . A mass problem is regarded as “unsolvable” if it
has no recursive solution. Compare Remark 1.13. Viewing P and Q as mass
problems, P ≤w Q means that P is “reducible” to Q in the sense that, given
any oracle for a solution of Q, we could use this oracle to compute a solution of
P . Thus the weak degree of P is a measure of the “difficulty” of P qua mass
problem.
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Example 2.5. Let T be a consistent, recursively axiomatizable theory. For
instance, we may take T = PA = first order Peano Arithmetic, or T = ZF =
Zermelo/Fraenkel Set Theory. By a completion of T we mean a maximal con-
sistent theory extending T with the same vocabulary as T . Note that T is
incomplete if and only if T has more than one completion. The Gödel Incom-
pleteness Theorem implies that this is the case for T = PA or T = ZF.

We identify sentences with their Gödel numbers in ω. We identify theories
as sets of (Gödel numbers of) sentences. Define

PT = {X ∈ 2ω | X is (the characteristic function of) a completion of T }.

We may then view PT as a mass problem, viz., the “problem” of finding a
completion of T . The mass problem PT is regarded as “unsolvable” if and only
if the theory T has no decidable completion. This is equivalent to saying that T
is essentially undecidable, i.e., there is no consistent, decidable theory extending
T . By a result of Tarski, this is the case for PA, ZF, and many other theories
which arise in the foundations of mathematics.

We now introduce strong reducibility, a variant of weak reducibility.

Definition 2.6. For P,Q ⊆ ωω, we say that P is strongly reducible to Q,
abbreviated P ≤s Q, if there exists a partial recursive functional Φ : Q→ P , i.e.,
a partial recursive functional Φ from ωω to ωω such that the domain of definition
of Φ includes Q and for all g ∈ Q we have Φ(g) ∈ P . This notion was introduced
by Medvedev [27] and has sometimes been called Medvedev reducibility. See also
Rogers [30, Section 13.7]. Clearly ≤s is a reflexive, transitive relation on the
powerset of ωω.

Remark 2.7. Thus strong reducibility is a uniform variant of weak reducibility.
Note that P ≤s Q implies P ≤w Q, but the converse often fails. Later we shall
see an analogy

weak reducibility / strong reducibility =

Turing reducibility / truth table reducibility.

See Remark 3.9 below.

Definition 2.8. We define strong degrees in terms of ≤s, just as weak degrees
were defined in terms of ≤w in Definition 2.3.

Explicitly, we say that P,Q ⊆ ωω are strongly equivalent, or Medvedev equiv-
alent, abbreviated P ≡s Q, if P ≤s Q and Q ≤s P . Clearly ≡s is an equivalence
relation on the powerset of ωω. The equivalence classes are called strong degrees,
or Medvedev degrees. The strong degree of P is denoted degs(P ). We use Ds to
denote the set of strong degrees. Thus we have

degs(P ) = {Q ⊆ ωω | P ≡s Q}

and
Ds = {degs(P ) | P ⊆ ωω}.

We partially order Ds by putting degs(P ) ≤ degs(Q) if and only if P ≤s Q.
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Remark 2.9. We are mainly interested in weak reducibility and weak degrees.
We discuss strong reducibility and strong degrees for technical reasons only.

Theorem 2.10. The lattices of weak degrees and strong degrees, Dw and Ds,
are distributive lattices with a bottom element.

Proof. The least upper bound operation for weak or strong reducibility is given
by

P ×Q = {f ⊕ g | f ∈ P, g ∈ Q}.
The greatest lower bound operation for weak reducibility is given by P ∪Q. The
greatest lower bound operation for weak or strong reducibility is given by

P +Q = {〈0〉af | f ∈ P} ∪ {〈1〉ag | g ∈ Q}.

It is straightforward but instructive to check that the weak degrees form a
distributive lattice under these operations. Similarly for the strong degrees.

The bottom element of Dw is 0 = degw(ωω), and similarly for Ds. Actually,
the 0 of Dw and the 0 of Ds are identical, namely

0 = {P ⊆ ωω | P contains a recursive member}.

Theorem 2.11. In both Dw and Ds, the bottom element 0 is meet irreducible,
i.e., it is not the greatest lower bound of two nonzero degrees.

Proof. This is obvious, because P +Q (or P ∪Q) contains a recursive member
if and only if at least one of P and Q contains a recursive member.

Theorem 2.12. DT is canonically embeddable into Dw and into Ds. The em-
beddings preserve order and least upper bound, and carry 0 to 0.

Proof. The embedding of DT into Dw is given by degT (X) 7→ degw({X}), and
similarly for Ds. Here {X} denotes the singleton set whose unique element is
X . We have X ≤T Y if and only if {X} ≤w {Y }, if and only if {X} ≤s {Y }.
Moreover, {X} × {Y } = {X ⊕ Y }.

Theorem 2.13. Dw is a complete distributive lattice.

Proof. It is straightforward to check that Dw under ≤ is canonically isomorphic
to the partial ordering of upward closed subsets of DT under reverse inclusion.
This is clearly is a complete lattice ordering. The isomorphism is given by
degw(P ) 7→ {degT (g) | P ≤w {g}}.

We now compare the Baire space, ωω, to the Cantor space, 2ω.

Definition 2.14. P,Q ⊆ ωω are recursively homeomorphic if there exist one-
to-one, onto, partial recursive functionals Φ : P → Q and Φ−1 : Q→ P .

Theorem 2.15. For each P ⊆ ωω there exists P ∗ ⊆ 2ω such that P is recur-
sively homeomorphic to P ∗. It follows that P ≡s P ∗, hence P ≡w P ∗.



Simpson, Mass Problems 8

Proof. Identifying subsets of ω with their characteristic functions in 2ω, let
P ∗ = {{2m3n | f(m) = n} | f ∈ P}. Compare Theorem 1.11.

Remark 2.16. In view of Theorem 2.15, subsets of 2ω and subsets of ωω are
identical as to their weak and strong degrees. Compare Remark 1.12. Thus we
may write

Dw = {degw(P ) | P ⊆ 2ω}
and similarly for Ds.

Remark 2.17. On the other hand, the spaces 2ω and ωω are different in some
ways. For instance, 2ω is compact while ωω is not compact. Furthermore, the
differences will be important to us. In particular, we shall see that the lattice
of weak degrees of nonempty Π0

1 subsets of 2ω has a top element, but this is not
the case for ωω. See Section 4 below.

Remark 2.18. Our main object of study will be the lattice Pw of weak degrees
of nonempty Π0

1 subsets of the Cantor space, 2ω. See Definition 3.7 below. We
mention Π0

1 subsets of ωω for technical reasons only.

Remark 2.19. Sorbi [43] gives a general survey of the lattices Dw and Ds of
all weak and strong degrees. However, Sorbi does not discuss the sublattices Pw
and Ps of weak and strong degrees of nonempty Π0

1 subsets of 2ω. The explicit
study of Pw and Ps began only recently, in 1999, with Simpson [38].

3 Trees and Π0
1 Sets

Definition 3.1. A predicate R ⊆ ωω × ω is said to be recursive if its charac-
teristic function χR : ωω × ω → {0, 1}, given by

χR(f, n) =

{
1 if R(f, n),

0 if ¬R(f, n),

is a recursive functional.

Definition 3.2. A set P ⊆ ωω is said to be Π0
1 if there is a recursive predicate

R ⊆ ωω × ω such that

P = {f ∈ ωω | ∀nR(f, n)}.

Example 3.3. Let T be a consistent, recursively axiomatizable theory. As in
Example 2.5, let PT be the set of (characteristic functions of) completions of T .
It is easy to see that PT is a nonempty Π0

1 subset of 2ω. Thus weak and strong
reducibility can be used to compare such theories.

In more detail, let B(T ) be the Lindenbaum algebra of T , i.e., the Boolean
algebra of sentences in the vocabulary of T modulo provable equivalence over
T . Thus B(T ) is a recursively presented Boolean algebra, i.e., the quotient of
a free recursive Boolean algebra modulo a recursively enumerable ideal. It can
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be shown that PT is (recursively homeomorphic to) the Stone space of B(T ).
Thus we have an effective version of Stone Duality, with nonempty Π0

1 subsets
of 2ω as the Stone spaces. If T1 and T2 are two such theories, then recursive
homomorphisms

h : B(T1)→ B(T2)

are in canonical one-to-one correspondence with recursive functionals

Φ : PT2 → PT1 .

In particular, B(T1) is recursively isomorphic to B(T2) if and only if PT1 is
recursively homeomorphic to PT2 .

Remark 3.4. Conversely, one can show that every nonempty Π0
1 subset of 2ω is

recursively homeomorphic to PT for some consistent, recursively axiomatizable
theory T . See Theorem 3.18 and Remark 3.19 below.

Remark 3.5. Many other interesting examples of Π0
1 subsets of 2ω arise from

logic, algebra, analysis, geometry, combinatorics, computability theory, etc.
There is a large literature on this subject. See for instance Cenzer/Remmel
[8] and Simpson [39, Chapter IV and Section VIII.2].

Remark 3.6. If P and Q are Π0
1 subsets of 2ω, then P ×Q, P ∪Q, P +Q are

Π0
1 subsets of 2ω. Thus the weak degrees of nonempty Π0

1 subsets of 2ω form
a sublattice of the lattice of all weak degrees. Similarly for strong degrees, and
similarly for subsets of ωω.

Definition 3.7. We use Pw to denote the set of weak degrees of nonempty Π0
1

subsets of 2ω. Thus Pw is a countable sublattice of Dw. Similarly Ps, the set
of strong degrees of nonempty Π0

1 subsets of 2ω, is a countable sublattice of Ds.

Remark 3.8. The countable distributive lattices Pw and Ps are known to have
a rich structure.

Binns/Simpson [4, 6] have shown that every countable distributive lattice is
lattice embeddable in Pw. A similar conjecture for Ps remains open, although
partial results in this direction are known. A special case is Corollary 9.4 below.
Binns [4, 5] has shown that for every b > 0 in Pw there exist b1,b2 < b in Pw
such that b = sup(b1,b2), and similarly for Ps. Cenzer/Hinman [7] have shown
that, for all a,b ∈ Ps such that a < b, there exists c ∈ Ps such that a < c < b.
A similar conjecture for Pw remains open. Binns [4, 5] has improved the result
of Cenzer/Hinman [7] by showing that, for all a,b ∈ Ps such that a < b, there
exist b1,b2 < b in Ps such that a < b1,b2 and b = sup(b1,b2).

These recent results for Pw and Ps are proved by means of priority argu-
ments. They invite comparison with the older, known results for r. e. Turing
degrees in Sacks [31] and Soare [42].

Remark 3.9. It is known that Ps behaves somewhat differently from Pw. To
bring out one of the differences, let P,Q be Π0

1 subsets of 2ω with P ≤s Q.
Thus we have a recursive functional Φ : Q → P . Using compactness of 2ω, we
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can find a total recursive functional Φ̂ : 2ω → 2ω which extends Φ, i.e., Φ =
the restriction of Φ̂ to Q. Thus, for every Y ∈ Q, Φ(Y ) is not only ≤T Y but
also ≤tt Y , where ≤tt denotes truth table reducibility. A general discussion of
truth table reducibility is in Rogers [30]. See also Simpson [35, Section 3] and
the proof of Lemma 6.5 below. Thus we have an analogy

weak reducibility / strong reducibility =

Turing reducibility / truth table reducibility.

In addition, it is known that every nonzero weak degree in Pw includes infinitely
many distinct strong degrees in Ps. See Simpson/Slaman [41].

We now present a useful characterization of Π0
1 sets, in terms of trees.

Definition 3.10. We use Seq to denote the set of finite sequences of natural
numbers. We use ρ, σ, τ, . . . to denote members of Seq. The length of σ ∈ Seq
is denoted lh(σ). The concatenation σ followed by τ is denoted σaτ . Thus
lh(σaτ) = lh(σ) + lh(τ). Given f ∈ ωω and n ∈ ω, we put

f [n] = 〈f(0), f(1), . . . , f(n− 1)〉.

Thus f [n] ∈ Seq and lh(f [n]) = n. We write σ ⊂ f to mean that σ = f [n] for
some n. Given τ ∈ Seq and n ≤ lh(τ), we put

τ [n] = 〈τ(0), τ(1), . . . , τ(n− 1)〉.

We write σ ⊆ τ to mean that σ = τ [n] for some n ≤ lh(τ).

Definition 3.11. For e,m, n, t ∈ ω and σ ∈ Seq, we write

{e}σt (m) = n

to mean that {e}f(m) = n for some (or any) f ∈ ωω such that f ⊃ σ, via a Tur-
ing computation which halts in at most t steps and uses only oracle information
from σ. Compare Definition 1.3.

Lemma 3.12. We have:

1. If {e}f [s]
t (m) = n and t′ ≥ t and s′ ≥ s, then {e}f [s′]

t′ (m) = n.

2. {e}f(m) = n if and only if {e}f [s]
t (m) = n for some s, t ∈ ω.

3. {e}f(m) = n if and only if {e}f [s]
s (m) = n for some s ∈ ω.

4. The relations {e}σt (m) = n and {e}σt (m) ↓ are recursive.

Proof. Straightforward.

Definition 3.13. A tree is a set T ⊆ Seq such that, for all τ ∈ T and all
n < lh(τ), τ [n] ∈ T . A path through T is a function f ∈ ωω such that, for all
n ∈ ω, f [n] ∈ T .
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Theorem 3.14. A set P ⊆ ωω is Π0
1 if and only if there exists a recursive tree

T ⊆ Seq such that

P = {f ∈ ωω | f is a path through T }.

Proof. Clearly the set of paths through a recursive tree is Π0
1. Conversely,

given a Π0
1 set P = {f | ∀nR(f, n)}, let e be an index of the partial recursive

functional Φ(f,m) ' least n such that ¬R(f, n). Then P = {f | Φ(f, 0) ↑} =
{f | {e}f(0) ↑}. Putting T = {σ | {e}σlh(σ)(0) ↑} we see that T is a recursive
tree and P = {paths through T }.

Definition 3.15. We use Seq2 to denote the set of finite sequences of 0’s and
1’s. Since Seq2 ⊆ Seq, the notations introduced in Definitions 3.10 and 3.11
apply.

Definition 3.16. A tree T is said to be bounded if for each n ∈ ω there are
only finitely many σ ∈ T such that lh(σ) = n. Note that Seq2 is a bounded
tree, while Seq is an unbounded tree.

Corollary 3.17. A set P ⊆ 2ω is Π0
1 if and only if there exists a recursive tree

T ⊆ Seq2 such that

P = {X ∈ 2ω | X is a path through T }.

Moreover, P is nonempty if and only if T is infinite.

Proof. The first assertion is a special case of Theorem 3.14. The second assertion
follows from compactness of 2ω, in the form of König’s Lemma. Namely, a
bounded tree has a path if and only if it is infinite.

We now use Corollary 3.17 to obtain the converse of Example 3.3.

Theorem 3.18.

1. If T is a consistent, recursively axiomatizable theory, then PT , the set of
completions of T , is a nonempty Π0

1 subset of 2ω.

2. Conversely, if P is a nonempty Π0
1 subset of 2ω, we can find a consistent,

recursively axiomatizable theory, T , such that P is recursively homeomor-
phic to PT .

Proof. Part 1 has already been noted in Example 3.3. For part 2, let S be an
infinite recursive tree such that P = {paths through S}. We use S to construct
a theory T in the propositional calculus with atoms An, n ∈ ω. Writing A1 = A
and A0 = ¬A, the axioms of T are all sentences of the form ¬ (Ai00 ∧Ai11 ∧ · · · ∧
Aikk ) where 〈i0, i1, . . . , ik〉 ∈ Seq2 \ S. Then P is recursively homeomorphic to
PT , via X 7→ the completion of T with axioms AX(n)

n , n ∈ ω.

Remark 3.19. Surprisingly, it is known that every Π0
1 subset of 2ω is recursively

homeomorphic to PT for some finitely axiomatizable theory T in the predicate
calculus. See Peretyatkin [29].
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We now discuss Π0
1 subsets of ωω and compare them to Π0

1 subsets of 2ω.

Definition 3.20. A set P ⊆ ωω is said to be recursively bounded if there exists
a recursive function g ∈ ωω such that for all f ∈ P , f(n) < g(n) for all n.

Remark 3.21. Clearly any subset of 2ω is recursively bounded, viz., by the
constant function λn.2. The next theorem implies that, up to recursive home-
omorphism, the study of recursively bounded Π0

1 subsets of ωω is equivalent to
the study of Π0

1 subsets of 2ω.

Theorem 3.22. For each recursively bounded Π0
1 set P ⊆ ωω, we can find a

Π0
1 set P ∗ ⊆ 2ω such that P is recursively homeomorphic to P ∗. It follows that

P ≡s P ∗, hence P ≡w P ∗.

Proof. Define P ∗ as in the proof of Theorem 2.15. It is straightforward to show
that, if P is Π0

1 and recursively bounded, then P ∗ is Π0
1.

Remark 3.23. Conversely, if P ⊆ 2ω is Π0
1, then for any recursive functional

Φ : P → ωω, the range {Φ(f) | f ∈ P} is Π0
1 and recursively bounded. This is

a consequence of compactness of 2ω.

Remark 3.24. By Theorem 3.22, the weak degrees of recursively bounded Π0
1

subsets of ωω belong to Pw, and similarly for strong degrees. On the other
hand, there are plenty of nonempty Π0

1 subsets of ωω whose weak degrees do
not belong to Pw.

Example 3.25. It is known from hyperarithmetical theory (see Sacks [32, Part
A] or Simpson [39, Section VIII.3]) that for any hyperarithmetical X ∈ 2ω there
exists a hyperarithmetical g ∈ ωω such that X ≤T g and the singleton set
{g} ⊆ ωω is Π0

1. If g is not recursive, the GKT Basis Theorem (see Simpson [39,
Section VIII.2]) implies that degw({g}) 6≤w P for any nonempty Π0

1 set P ⊆ 2ω.

Example 3.26. Another interesting Π0
1 subset of ωω is

DNR = {f ∈ ωω | ∀n f(n) 6= {n}(n)},

i.e., the set of f : ω → ω which are diagonally non-recursive. We shall comment
more on this later. See Corollary 7.3 and Remark 7.5 below.

4 Weak and Strong Completeness

Definition 4.1. A nonempty Π0
1 set P ⊆ 2ω is said to be weakly complete, or

Muchnik complete, if every nonempty Π0
1 subset of 2ω is weakly reducible to P .

Definition 4.2. A nonempty Π0
1 set P ⊆ 2ω is said to be strongly complete, or

Medvedev complete, if every nonempty Π0
1 subset of 2ω is strongly reducible to

P .

Remark 4.3. We use 1 to denote the weak degree of any nonempty Π0
1 subset

of 2ω which is weakly complete. Thus 1 is the top element of Pw. Similarly for
strong degrees and Ps.
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Example 4.4. The following Π0
1 subsets of 2ω are known to be strongly com-

plete, hence weakly complete.

1. P = {completions of PA}. Instead of PA we could use any effectively
axiomatizable, effectively essentially undecidable theory. This is related
to the Gödel/Rosser Theorem. See also Scott/Tennenbaum [33].

2. P = {f ∈ 2ω | f separates A and B}, where A = {n | {n}(n) ' 0} and
B = {n | {n}(n) ' 1}. See Jockusch/Soare [20].

3. We can also give an explicit, recursion-theoretic construction of a Π0
1 set

P with the desired property. Namely, P =
∏∞
e=0 P

+
e where P+

e is the
nonempty Π0

1 subset of 2ω indexed by e. See Simpson [35, Lemma 3.3].

Theorem 4.5 (Simpson 2000). Any two strongly complete Π0
1 subsets of 2ω

are recursively homeomorphic.

Proof. The proof is by an effective back-and-forth argument, using the Recur-
sion Theorem. See Simpson [35, Section 3]. It is analogous to the proof of
Myhill’s result that any two creative, recursively enumerable subsets of ω are
recursively isomorphic. Myhill’s result is expounded in Rogers [30].

Corollary 4.6. A nonempty Π0
1 subset of 2ω is strongly complete if and only if

it is recursively homeomorphic to the set of completions of PA.

The proof of Theorem 4.5 also gives the following.

Corollary 4.7. Let P and Q be nonempty Π0
1 subsets of 2ω. If P is strongly

complete, then there is a recursive functional Φ : P → Q which maps P onto Q,
i.e., Q = {Φ(f) | f ∈ P}.

Proof. See Simpson [35, Section 3].

The following example shows that strong completeness is not the same as
weak completeness.

Example 4.8 (Jockusch 1989). For k ≥ 2 let DNRk be the set of functions
f : ω → {1, . . . , k} which are DNR. It is easy to see that the sets DNRk,
k = 2, 3, . . ., are Π0

1 and recursively bounded, and that DNR2 is strongly com-
plete. Jockusch [19] has shown that the the sets DNRk, k = 2, 3, . . . are weakly
complete but of different strong degrees. Thus we have DNR2 ≡w DNR3 ≡w . . .
yet DNR2 >s DNR3 >s . . ..

An interesting relationship between weak and strong reducibility is given by
the following theorem.

Theorem 4.9 (Simpson 2001). Let P,Q ⊆ 2ω be nonempty Π0
1 sets. If

P ≤w Q, then there exists a nonempty Π0
1 set Q′ ⊆ Q such that P ≤s Q′.

Proof. We shall prove this later, as a consequence of the Almost Recursive Basis
Theorem. See Theorem 6.6.
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Corollary 4.10. If Q ⊆ 2ω is Π0
1 and weakly complete, then there is a Π0

1 set
Q′ ⊆ Q such that Q′ is strongly complete.

Definition 4.11. P,Q ⊆ ωω are said to be Turing degree isomorphic if there
exists a Turing-degree-preserving one-to-one correspondence between P and Q.
Clearly recursive homeomorphism implies Turing degree isomorphism.

Theorem 4.12 (Simpson 2001). Any two weakly complete Π0
1 subsets of 2ω

are Turing degree isomorphic.

Proof. This follows easily from Theorem 4.5 and Corollary 4.10.

Corollary 4.13. A nonempty Π0
1 subset of 2ω is weakly complete if and only if

it is Turing degree isomorphic to the set of completions of PA.

Corollary 4.14. Any two nonempty Π0
1 subsets of

⋃∞
k=0 DNRk are Turing de-

gree isomorphic.

Corollary 4.15. If P is weakly complete, then the set of Turing degrees of
members of P is upward closed.

Proof. Let P be weakly complete. Put Q = P × 2ω. Clearly Q is weakly
complete, and the set of Turing degrees of members of Q is upward closed. By
Theorem 4.12, P and Q are Turing degree isomorphic.

Corollary 4.16 (Solovay). The set of Turing degrees of completions of PA is
upward closed.

5 1-Randomness

In this section we present an explicit, natural example of a weak degree in Pw
which is strictly between 0 and 1. Our example is based on Martin-Løf’s theory
of randomness.

We use the “fair coin” probability measure on 2ω. Thus for all n ∈ ω we
have

µ({X ∈ 2ω | X(n) = 0}) = µ({X ∈ 2ω | X(n) = 1}) = 1/2.

Definition 5.1. An effective null Gδ is a set S ⊆ 2ω of the form S =
⋂∞
n=0 Un

where Un, n ∈ ω, is a recursively indexed sequence of Σ0
1 sets such that µ(Un) <

1/2n for all n.

Definition 5.2. X ∈ 2ω is 1-random if X /∈ S for all effective null Gδ sets S.
The set of 1-random X ∈ 2ω is denoted R1. Clearly µ(R1) = 1.

Theorem 5.3 (Martin-Løf 1966). The union of all effective null Gδ sets is
an effective null Gδ set.

Proof. This result is due to Martin-Løf [26]. The proof is by a diagonal argu-
ment. See also Kučera [22].
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Corollary 5.4. 2ω \R1 is an effective null Gδ set. Hence R1 is Σ0
2.

Corollary 5.5. R1 =
⋃∞
n=0 Pn where Pn, n ∈ ω, is a sequence of Π0

1 sets.

Theorem 5.6. Let Q ⊆ 2ω be Π0
1 of measure 0. Then Q is an effective null Gδ

set.

Proof. Straightforward.

Corollary 5.7. Let Q ⊆ 2ω be Π0
1. We have µ(Q) > 0 if and only if Q∩R1 6= ∅.

In this case we actually have Q ∩R1 ⊇ P 6= ∅, where P is Π0
1 and µ(P ) > 0.

Theorem 5.8 (Kučera 1985). Let Q ⊆ 2ω be Π0
1 with µ(Q) > 0. Then for

all 1-random X ∈ 2ω we have that X(k) ∈ Q for some k ∈ ω. Here X(k)(n) =
X(k + n) for all n ∈ ω.

Proof. See Kučera [22]. Let T be a recursive tree such that Q is the set of paths
through T . Let T̃ be the set of all τa〈i〉 ∈ Seq2 such that τ ∈ T and τa〈i〉 /∈ T .
Let Q2 be the set of paths through the tree T 2 = T ∪ {σaτ | σ ∈ T̃ , τ ∈ T }.
Note that Q2 is Π0

1 and µ(Q2) = 1 − (1 − µ(Q))2. Define Qn similarly for all
n ≥ 1. Since Qn is Π0

1 and µ(Qn) = 1− (1−µ(Q))n, we have that 2ω \
⋃∞
n=1Q

n

is an effective null Gδ set. Hence X ∈ Qn for some n. It follows that X(k) ∈ Q
for some k.

Corollary 5.9. Let Q ⊆ 2ω be Π0
1 with µ(Q) > 0. Then Q ≤w R1.

Corollary 5.10. Let Q be a nonempty Π0
1 subset of R1. Then Q ≡w R1.

Corollary 5.11. Among all weak degrees of Π0
1 sets Q ⊆ 2ω with µ(Q) > 0,

there is a largest one, and it is the same as the weak degree of R1. Call this
weak degree r1.

Theorem 5.12. Let A,B ⊆ ω be recursively inseparable. Then

µ({X ∈ 2ω | ∃Y ≤T X (Y separates A,B)}) = 0.

Proof. Not difficult. See Jockusch/Soare [20].

Corollary 5.13. The weak degree r1 = degw(R1) ∈ Pw of Corollary 5.11 is
not weakly complete. We have 0 < r1 < 1.

Remark 5.14. More generally, for all weak degrees a ∈ Dw, if sup(a, r1) ≥ 1
then a ≥ 1. This result is due to Simpson [40].

Remark 5.15. The weak degree r1 is the first explicit, natural example of
a weak degree in Pw strictly between 0 and 1. This is especially interesting
because no explicit, natural examples of r. e. Turing degrees strictly between 0
and 0′ are known. See Simpson [38].
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6 The Almost Recursive Basis Theorem

Definition 6.1. X is almost recursive (a.k.a., hyperimmune-free) if, for each
function f : ω → ω recursive in X , there exists a recursive function g : ω → ω
such that f(m) < g(m) for all m ∈ ω.

The following theorem is from Jockusch/Soare [20]. We call it the Almost
Recursive Basis Theorem.

Theorem 6.2. Let P be a nonempty Π0
1 subset of 2ω. Then there exists X ∈ P

such that X is almost recursive.

Proof. Define a sequence of nonempty Π0
1 sets P = P0 ⊇ P1 ⊇ · · · ⊇ Pn ⊇ · · ·

as follows. Put P0 = P . If ∃m (∃X ∈ Pn) {n}X(m) ↑, fix such an m and put
Pn+1 = {X ∈ Pn | {n}X(m) ↑}. Otherwise, put Pn+1 = Pn. Clearly there is a
unique X ∈

⋂∞
n=0 Pn. By Remark 3.23, X is almost recursive.

Corollary 6.3. There exists a completion of PA which is almost recursive.

Corollary 6.4. There exists a 1-random X ∈ 2ω which is almost recursive.

Lemma 6.5. Suppose X is almost recursive and X ≥T Y . Then Y is truth
table reducible to X. In particular, there exists a total recursive functional
Φ : 2ω → 2ω such that Φ(X) = Y .

Proof. Let e be such that Y = {e}X . Define f : ω → ω by f(m) = the least
s such that {e}X[s]

s (m) ↓. Clearly f ≤T X . Let g : ω → ω be recursive such
that f(m) ≤ g(m) for all n. Define a truth table functional Φ : 2ω → 2ω by
putting Φ(Z)(m) = {e}Z[g(m)]

g(m) (m) if this is defined, and Φ(Z)(m) = 0 otherwise.
Clearly Φ(X) = Y .

The following theorem from Simpson [40] provides an interesting relationship
between ≤w and ≤s.

Theorem 6.6. Let P,Q ⊆ 2ω be nonempty Π0
1 sets. If P ≤w Q, then there is

a nonempty Π0
1 set Q′ ⊆ Q such that P ≤s Q′.

Proof. Assume P ≤w Q. By Theorem 6.2 let Y ∈ Q be almost recursive. Let
X ∈ P be such that X ≤T Y . By Lemma 6.5 let Φ : 2ω → 2ω be a truth table
functional such that Φ(Y ) = X . Put Q′ = Q∩Φ−1(P ). Then Q′ is a nonempty
Π0

1 subset of Q, and P ≤s Q′ via Φ.

Corollary 6.7. Let X be 1-random and almost recursive. Then there is no
completion of PA which is ≤T X.

Proof. Otherwise, by the proof of Theorem 6.6, there would be a strongly com-
plete Π0

1 set Q ⊆ 2ω with µ(Q) > 0. This would contradict Theorem 5.12.
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7 The Σ0
3 → Π0

1 Embedding Theorem

The next theorem, due to Simpson [40], tells us that the weak degrees of many
naturally occurring mass problems belong to Pw, even when they do not natu-
rally occur as recursively bounded Π0

1 sets.

Definition 7.1. A set S ⊆ ωω is said to be Σ0
3 if there exists a recursive

predicate R ⊆ ωω × ω3 such that

S = {f ∈ ωω | ∃n1 ∀n2 ∃n3R(f, n1, n2, n3)}.

A set P ⊆ ωω is said to be Π0
3 if its complement ωω \ P is Σ0

3. One defines Σ0
k

and Π0
k similarly for all k ≥ 1. See Rogers [30, Chapter 15].

Theorem 7.2. If S ⊆ ωω is Σ0
3, then for all nonempty Π0

1 sets P ⊆ 2ω we can
find a Π0

1 set Q ⊆ 2ω such that Q ≡w P ∪ S.

Proof. First use a Skolem function technique to reduce to the case where S is
a Π0

1 subset of ωω. Namely, replace S by the set of all 〈k〉a(f ⊕ g) ∈ ωω such
that ∀m (g(m) = the least n such that R(f, k,m, n)). Clearly this set is ≡w S
and Π0

1. After that, let TS be a recursive subtree of Seq such that S is the set
of paths through TS . Let TP be a recursive subtree of Seq2 such that P is the
set of paths through TP . We may assume that, for all τ ∈ TS and n < lh(τ),
τ(n) ≥ 2. Define TQ to be the set of sequences ρ ∈ Seq of the form

σ0
a〈n0〉aσ1

a〈n1〉a · · ·a〈nk−1〉aσk

where 〈n0, n1, . . . , nk−1〉 ∈ TS, σ0, σ1, . . . , σk ∈ TP , and ρ(m) ≤ m + 2 for all
m < lh(ρ). Thus TQ is a recursive subtree of Seq. Let Q ⊆ ωω be the set of
paths through TQ. It is not hard to see that Q ≡w P ∪ S. Note that Q is Π0

1

and recursively bounded. Hence by Theorem 3.22 there is a Π0
1 set Q∗ ⊆ 2ω

which is recursively homeomorphic to Q.

Corollary 7.3. There is a Π0
1 set D ⊆ 2ω such that D ≡w DNR.

Proof. Apply Theorem 7.2 with P = DNR2 and S = DNR.

Remark 7.4. Put d = degw(D) = degw(DNR). By Kumabe [21] (see also
Ambos-Spies/Kjos-Hanssen/Lempp/Slaman [2]) we have

0 < d < r1 < 1.

The weak degrees 1, r1, and d correspond to the system WKL0 and two of its
subsystems which have arisen in the foundations of mathematics. See respec-
tively Simpson [39], Yu/Simpson [45], and Giusto/Simpson [18].

Remark 7.5. Jockusch [19] has shown that the following mass problems are
pairwise Turing degree isomorphic, hence weakly equivalent.

1. DNR = {f ∈ ωω | f is diagonally non-recursive, i.e., ∀e f(e) 6' {e}(e)}.
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2. FPF = {f ∈ ωω | f is fixed point free, i.e., ∀e ∃m {f(e)}(m) 6' {e}(m)}.

3. EI = {A ⊆ ω | A is effectively immune}.
This means that A is infinite and, given an index of an r. e. set C ⊆ A,
we can effectively find a finite upper bound for the cardinality of C.

4. EBI = {A ⊆ ω | A is effectively bi-immune}.
This means that both A and ω \A are effectively immune.

Definition 7.6. A member of 2ω is said to be 2-random if it is 1-random relative
to 0′, the Turing degree of the Halting Problem. The set of 2-random X ∈ 2ω

is denoted R2. We write r2 = degw(R2).

Corollary 7.7. There is a Π0
1 set R∗2 ⊆ 2ω such that R∗2 ≡w R2 ∪ P , where

P = {completions of PA}. Put r∗2 = inf(r2,1) = degw(R∗2).

Proof. Relativizing Corollary 5.4 we see that R2 is a Σ0
3 subset of 2ω. Our result

then follows by Theorem 7.2.

Theorem 7.8. If X is 2-random, then X is not almost recursive.

Proof. Martin [24] has shown that µ({X ∈ 2ω | X is almost recursive}) = 0.
Our theorem follows from an analysis of Martin’s proof. See also the exposition
of Martin’s result in Dobrinen/Simpson [11].

Theorem 7.9. We have 0 < d < r1 < r∗2 < 1.

Proof. From Remark 7.4 we have 0 < d < r1, and obviously r1 ≤ r∗2 ≤ 1.
Theorem 5.12 implies that r∗2 < 1. The fact that r1 < r∗2 follows from Corollaries
6.4 and 6.7 and Theorem 7.8.

Remark 7.10. Additional examples of naturally occurring mass problems whose
weak degrees belong to Pw are in Simpson [40].

8 Embedding the R. E. Turing Degrees

Recall that RT is the upper semilattice of Turing degrees of recursively enu-
merable subsets of ω, and Pw (Ps) is the lattice of weak (strong) degrees of
nonempty Π0

1 subsets of 2ω. See Remark 1.17 and Definition 3.7.
In this section we use the Σ0

3 → Π0
1 Embedding Theorem 7.2 to embed RT

into Pw. We do not know whether there exists an embedding of RT into Ps.

Theorem 8.1. Let A ∈ 2ω be ∆0
2, i.e., degT (A) ≤T 0′. Then there is a Π0

1 set
PA ⊆ 2ω such that PA ≡w P ∪ {A}, where P = {completions of PA}. We have
PA⊕B ≡w PA × PB .

Proof. The first statement follows from Theorem 7.2 since the singleton set {A}
is Π0

2. The second statement is straightforward.
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Theorem 8.2 (Arslanov Completeness Criterion). Let A ⊆ ω be recur-
sively enumerable. If f ∈ DNR and f ≤T A, then A is Turing complete, i.e.,
degT (A) = 0′.

Proof. See Soare’s book [42, Section V.5]. Note that we are identifying A ⊆ ω
with its characteristic function χA ∈ 2ω.

Theorem 8.3. Let A,B ⊆ ω be recursively enumerable. Then A ≤T B if and
only if PA ≤w PB.

Proof. Obviously A ≤T B implies PA ≤w PB . For the converse, recall that P
is strongly complete, hence recursively homeomorphic to DNR2. In particular,
for all X ∈ P there is a DNR function f ≤T X . Assume now that PA ≤w PB .
In particular we can find X ∈ P ∪ {A} such that X ≤T B. If X ∈ P , then by
the Arslanov Completeness Criterion, B is Turing complete, hence A ≤T B. If
X /∈ P , then X = A, hence again A ≤T B.

Remark 8.4. Thus our embedding of the r. e. Turing degrees into the weak
lattice Pw is given by degT (A) 7→ degw(P ∪ {A}), where P = {completions
of PA}. The embedding is one-to-one, order preserving, least upper bound
preserving, and carries 0 to 0 and 0′ to 1.

Remark 8.5. Instead of P = {completions of PA}, we could use any nonempty
Π0

1 set P ⊆ 2ω such that DNR ≤w P . Compare Corollary 7.3. Thus, for any
c ∈ Pw such that c ≥ d = degw(DNR), we obtain an embedding of the r. e.
Turing degrees into {a ∈ Pw | 0 ≤ a ≤ c}. The embbedding is one-to-one, order
preserving, least upper bound preserving, and carries 0 to 0 and 0′ to c.

9 A Priority Argument

In this section we sketch the construction of a Π0
1 set P ⊆ 2ω with several

interesting properties. The construction uses a priority argument.

Definition 9.1. A Π0
1 set P ⊆ 2ω is said to be thin if, for all Π0

1 sets Q ⊆ P ,
there is a finite set σ1, . . . , σn ∈ Seq2 such that

Q = {X ∈ P | σ1 ⊂ X ∨ · · · ∨ σn ⊂ X}.

This is equivalent to saying that, for all Π0
1 sets Q ⊆ P , P \Q is Π0

1. See also
references [25, 12, 13, 9].

Definition 9.2. A family of Turing degrees {ai | i ∈ I} is said to be in-
dependent if for all finite {i0, i1, . . . , in} ⊆ I, ai0 ≤ sup(ai1 , . . . ,ain) implies
i0 ∈ {i1, . . . , in}.

Theorem 9.3. We can construct a Π0
1 set P ⊆ 2ω with the following properties:

1. P is thin and of cardinality 2ℵ0 .

2. P has no recursive members.
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3. The Turing degrees degT (X), X ∈ P , are independent.

4. For all X ∈ P , putting a = degT (X), we have a′ = sup(a,0′).
Here a′ denotes the Turing jump of a.

Furthermore, given a Π0
1 set Q ⊆ 2ω with no recursive members, we can arrange

that no member of P Turing computes a member of Q.

Sketch of proof. We follow Binns/Simpson [6] building on the techniques of
Martin/Pour-El [25] and Jockusch/Soare [20, Theorem 4.7].

By a treemap we mean a function h : Seq2 → Seq2 such that h(σ)a〈i〉 ⊆
h(σa〈i〉) for all σ ∈ Seq2, i ∈ {0, 1}.

Starting with h0 = the identity map, we construct a recursive sequence
of recursive treemaps hs, s ∈ ω, which are nested in the sense that for all s
and all σ ∈ Seq2 there exists τ ∈ Seq2 such that hs+1(σ) = hs(τ). After
presenting the recursive construction, we argue that, for all σ ∈ Seq2, the limit
h(σ) = lims hs(σ) exists and is finite. If follows that h = lims hs is a treemap,
and we define

P = {X ∈ 2ω | ∀n (∃σ of length n)h(σ) ⊂ X}.
Clearly P will be Π0

1 and of cardinality 2ℵ0 .
In order to insure that P is thin, we arrange that for all e ∈ ω and all

σ ∈ Seq2 of length e, {e}h(σ)(0) ↓ “if possible”. Then for all X ∈ P we have

HX = {e | (∃σ of length e) ({e}h(σ)
lh(h(σ))(0) ↓ and h(σ) ⊂ X)},

so HX ≤T H ⊕X and this gives property 4. Now, given a Π0
1 set Q ⊆ 2ω, let e

be such that Q = {X | {e}X(0) ↑}. (See the proof of Theorem 3.14.) Then

Q = {X ∈ P | (∃σ of length e) ({e}h(σ)
lh(h(σ))(0) ↑ and h(σ) ⊂ X)},

and this gives thinness.
The strategy for property 3 is similar. For example, to insure X 6≤T Y for

all X,Y ∈ P with X 6= Y , we arrange that for all e and all σ, τ ∈ Seq2 of length
e with σ 6= τ , ∃m < lh(h(σ)) ({e}h(τ)

lh(h(τ))(m) ↓ 6= h(σ)(m)) “if possible”.
The final property is obtained by means of a Sacks preservation strategy.

See Binns/Simpson [6].

Corollary 9.4. Every finite distributive lattice is lattice embeddable in Pw and
in Ps.

Proof. First note that any finite distributive lattice is lattice embeddable in
the free distributive lattice on n generators, for sufficiently large n. Now let
P be as in Theorem 9.3, and let P1, . . . , Pn be nonempty, pairwise disjoint, Π0

1

subsets of P . In view of property 3, the weak or strong degrees of P1, . . . , Pn
are independent and hence freely generate a free distributive lattice. Details are
in Binns/Simpson [6].
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Corollary 9.5. For any b > 0 in Pw or Ps, every finite distributive lattice is
lattice embeddable in the interval 0 ≤ a ≤ b.

Proof. Let Q ⊆ 2ω be Π0
1 with b = degw(Q) or degs(Q) as the case may be.

Let P be as in Theorem 9.3 such that no member of P Turing computes a
member of Q. Proceed as in the proof of Corollary 9.4, replacing P1, . . . , Pn by
P1 +Q, . . . , Pn +Q.

Remark 9.6. By Theorem 9.3, let P be a nonempty thin Π0
1 subset of 2ω

with no recursive members. Then P is of measure 0, and in fact, degw(P ) is
incomparable with r1. These results are due to Simpson [40].

Remark 9.7. By Theorem 9.3 and Remark 3.19, let T be a consistent, finitely
axiomatizable, essentially undecidable theory such that PT is thin. Then any
recursively axiomatizable theory extending T with the same vocabulary as T is
finitely axiomatizable. Compare Martin/Pour-El [25].
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