

The density theorem for the Muchnik lattice

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University
<http://www.math.psu.edu/simpson/>
simpson@math.psu.edu

June 24, 2015

This is my abstract for a Workshop on Computability Theory, Bucharest, June 27–28, 2015.

Let \mathcal{E}_T be the upper semilattice of recursively enumerable Turing degrees. There is a strong analogy between \mathcal{E}_T and \mathcal{E}_w , the lattice of Muchnik degrees of nonempty Π_1^0 subsets of $\{0, 1\}^{\mathbb{N}}$. The most famous structural theorems concerning \mathcal{E}_T are the Splitting Theorem (Sacks 1962) and the Density Theorem (Sacks 1964). The analogous Splitting Theorem for \mathcal{E}_w was proved by Stephen Binns and published in 2003. The analogous Density Theorem for \mathcal{E}_w has been a long-standing open question, but it was recently proved by Binns, Shore, and Simpson and will appear in a forthcoming paper. In this talk I shall sketch the proof of the Density Theorem for \mathcal{E}_w . The proof involves a small amount of hyperarithmetical theory.