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Well partial orderings.

Definition. A well partial ordering is a partially ordered set P

with any of the following properties.

(By Ramsey’s Theorem, these properties are pairwise equivalent.)

1. P has no infinite descending sequences and no infinite antichains.

2. Any upwardly closed subset of P is finitely generated.

3. For any sequence ai, i = 0,1,2, . . . of elements of P ,

there exist i and j such that i < j and ai ≤ aj.

A sequence for which this conclusion fails is called a bad sequence.

Property 3 says that P has no bad sequences.

4. For any sequence ai, i = 0,1,2, . . . of elements of P ,

there exists a subsequence ain, n = 0,1,2, . . ., i0 < i1 < i2 < · · ·,

such that ai0 ≤ ai1 ≤ ai2 ≤ · · ·.

5. Any linearization of P is a well ordering.
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Examples of well partial orderings.

1. Any well ordering is a well partial ordering.

2. The union of any finite sequence of well partial orderings

is a well partial ordering.

3. The product of any finite sequence of well partial orderings

is a well partial ordering.

4. (Higman’s Lemma) If P is a well partial ordering, then

P∗ = {finite sequences of elements of P} is a well partial ordering.

Here P∗ is partially ordered as follows:

〈a1, . . . , am〉 ≤ 〈b1, . . . , bn〉 if and only if a1 ≤ bj1, . . ., am ≤ bjm
for some j1, . . . , jm such that 1 ≤ j1 < · · · < jm ≤ n.

Summary. The class of well partial orderings

is closed under certain finitary operations.
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An application to algebra: the Hilbert Basis Theorem.

Let K be a field. The Hilbert Basis Theorem says:

for any positive integer k, every ideal in the polynomial ring K[x1, . . . , xk]

is finitely generated.

A standard proof of the Hilbert Basis Theorem uses Dickson’s Lemma:

The monomials x
e1
1 · · ·x

ek
k , e1, . . . , ek ∈ N, are well partially ordered

under divisibility. In other words, Nk is well partially ordered under

the product ordering. This is a special case of item 3 above.

Another application to algebra: Formanek/Lawrence.

Let S be the infinite symmetric group, i.e., the group of

permutations of N which move only finitely many elements of N.

Theorem (Formanek/Lawrence, 1978). For any field K

of characteristic 0, the group ring K[S] is Noetherian,

i.e., it has no infinite ascending sequence of two-sided ideals.

Equivalently, any two-sided ideal in K[S] is finitely generated.

4



Proof of the Formanek/Lawrence Theorem.

Let S be the infinite symmetric group.

Theorem (Formanek/Lawrence, 1978). For any field K

of characteristic 0, the group ring K[S] is Noetherian.

Proof. A diagram is a finite, downwardly closed subset of N2.

By Higman’s Lemma, the diagrams form a well partial ordering

under inclusion. A set U of diagrams is said to be closed if

∀D (D ∈ U ⇐⇒ ∀E (E % D ⇒ E ∈ U)). Note that any closed set of

diagrams is upwardly closed under inclusion. Hence, any closed set of

diagrams is finitely generated. Formanek and Lawrence exhibit a

one-to-one, order-preserving correspondence between

two-sided ideals in K[S] and closed sets of diagrams. Hence,

any two-sided ideal in K[S] is finitely generated, Q.E.D.

Remark. It is unknown whether the Formanek/Lawrence Theorem can

be generalized from the specific group S to some large family of locally

finite groups. The proof for S relies on detailed information about the

representation theory of the finite symmetric groups Sn, n = 2,3,4, . . .,

information which is not available for other finite groups.
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A generalization of Ramsey’s Theorem.

Given an infinite set X ⊆ N, let [X]k = {Y ⊂ X | Y is of cardinality k},

and let [X]∞ = {Y ⊆ X | Y is infinite}. There is a generalization of

Ramsey’s Theorem due to Fred Galvin and Karel Prikry.

Ramsey’s Theorem. If [N]k = C1 ∪ · · · ∪ Cl

then there exists X ∈ [N]∞ such that [X]k ⊆ Ci for some i.

Galvin/Prikry Theorem. We endow [N]∞ with the product topology.

If [N]∞ = C1 ∪ · · · ∪ Cl where each Ci is a Borel set,

then there exists X ∈ [N]∞ such that [X]∞ ⊆ Ci for some i.

As a consequence of the Galvin/Prikry Theorem, we have:

Lemma. Let a be a Borel function from [N]∞

into a discrete topological space. Then, there exists X ∈ [N]∞ such that

the restriction of a to [X]∞ is continuous.
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The idea behind better partial orderings.

Definition. A sequence is a function a such that dom(a) = N.
A subsequence of a is the restriction of a to some X ∈ [N]∞.

Definition. An array is a function a such that dom(a) = [N]∞.

A subarray of a is the restriction of a to [X]∞ for some X ∈ [N]∞.

We may identify a sequence a with the array X 7→ a(min(X)).

From this point of view, an array is a kind of generalized sequence.

The idea behind better partial ordering theory is to imitate

well partial ordering theory, replacing sequences by Borel arrays.
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Better partial orderings.

Definition (essentially due to Crispin St. J. A. Nash-Williams).

A better partial ordering is a partial ordering P

with any of the following pairwise equivalent properties.

We endow P with the discrete topology.

1. For any Borel array a : [N]∞ → P , there exists X ∈ [N]∞

such that a(X) ≤ a(X \ {min(X)}).

A Borel array for which this conclusion fails is called a bad array.

Property 1 says that P has no bad array.

2. For any Borel array a : [N]∞ → P , there exists X ∈ [N]∞

such that a(Y ) ≤ a(Y \ {min(Y )}) for all Y ∈ [X]∞.

3. For any continuous array a : [N]∞ → P , there exists X ∈ [N]∞

such that a(X) ≤ a(X \ {min(X)}).

4. For any continuous array a : [N]∞ → P , there exists X ∈ [N]∞

such that a(Y ) ≤ a(Y \ {min(Y )}) for all Y ∈ [X]∞.
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A theorem of Nash-Williams.

We have seen that the class of well partial orderings

has some finitary closure properties.

Nash-Williams proved that the class of better partial orderings

has analogous infinitary closure properties.

The infinitary analog of Higman’s Lemma reads as follows:

Theorem (Nash-Williams). If P is a better partial ordering,

then P∗∗ = {transfinite sequences of elements of P}

is a better partial ordering.

Here P∗∗ is partially ordered as follows:

〈ai | i < α〉 ≤ 〈bj | j < β〉 if and only if there exists a function

f : {i | i < α} → {j | j < β} such that f(i) < f(i′) for all i < i′ < α,

and ai ≤ bf(i) for all i < α.
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As a corollary of the Nash-Williams Transfinite Sequence Theorem,

we have:

Corollary 1. If P is a better partial ordering, then the downwardly

closed subsets of P form a better partial ordering under inclusion.

Taking complements, we also have:

Corollary 2. If P is a better partial ordering, then the upwardly closed

subsets of P form a better partial ordering under reverse inclusion.

On the next slide we present an application to algebra.
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An application to algebra.

Applying Corollary 1 to the better partial ordering N2, we see that

the diagrams are better partially ordered under inclusion. And then,

applying Corollary 2 to the diagrams, we see that the upwardly closed

sets of diagrams are better partially ordered under reverse inclusion.

But then, as in the proof of the Formanek/Lawrence Theorem,

it follows that the two-sided ideals of K[S] are better partially ordered

under reverse inclusion. In particular we have:

Theorem (Hatzikiriakou/Simpson, 2015). The group ring K[S] satisfies

the antichain condition, i.e., it has no infinite family of two-sided ideals

which are pairwise incomparable under inclusion.

.

Thank you for your attention!
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