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Abstract:

We apply some concepts and results from
mathematical logic in order to obtain an apparently
new counterexample in 2-dimensional symbolic
dynamics. A set X is said to be Muchnik reducible to
a set Y if each point of Y can be used as a Turing
oracle to compute a point of X. The Muchnik degree

of X is the equivalence class of X under the
equivalence relation of mutual Muchnik reducibility.
There is an extensive recursion-theoretic literature
concerning the lattice of Muchnik degrees of nonempty
effectively closed sets in Euclidean space. This lattice
is known as Pw. We prove that Pw consists precisely of
the Muchnik degrees of 2-dimensional subshifts of
finite type. We apply this result to obtain an infinite
collection of 2-dimensional subshifts of finite type
which are, in a certain sense, mutually incompatible.
Our application is stated in purely dynamical terms,
with no mention of recursion theory. We speculate on
possible correlations between the dynamical properties
of a 2-dimensional subshift of finite type and its
Muchnik degree.

—

We begin with an introduction to

recursion theory, a.k.a., computability theory.

This is one of the four main branches of

mathematical logic.
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Register machine instructions:

��?
??

??
??

// R+
i

onmlhijk //

??�������

increment register Ri (increment instruction)

��?
??

??
??

// R−
i

onmlhijk e //

��?
??

??
????�������

if Ri contains 0, go to e, else decrement Ri

(decrement instruction)

// R0
i

onmlhijk //

if Ri contains n, replace n by g(n)
(oracle instruction)

4



Examples of register machine programs:

startonmlhijk // R−
1

onmlhijk

��

e // R−
2

onmlhijk

��

e // stoponmlhijk

R+
3

onmlhijk

OO

R+
3

onmlhijk

OO

An addition program: f(m, n) = m + n.

startonmlhijk // R−
1

onmlhijk

e
��

// R−
2

onmlhijk

��

e // R−
4

onmlhijk

��

e
yy

stoponmlhijk R+
3

onmlhijk

��

R+
2

onmlhijk

OO

R+
4

onmlhijk

EE

A multiplication program: f(m, n) = mn.
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Definition. A function f : Nk → N is said to

be recursive, a.k.a., computable, if there

exists a program P which computes it.

Details: Given n1, . . . , nk ∈ N, let P(n1, . . . , nk)

be the run of P starting with n1, . . . , nk in

registers R1, . . . , Rk respectively, and 0 in the

other registers. Then P(n1, . . . , nk) eventually

stops with f(n1, . . . , nk) in register Rk+1.

For example, the programs above show

that the functions f(m, n) = m + n and

f(m, n) = mn are computable.

The work of Turing in the 1930s provides

convincing evidence that we have the “right”

or “correct” concept of computability. This

material is basic for both recursion theory

and theoretical computer science.

A footnote: The only two mathematicians

in Time Magazine’s list of the 20 greatest

thinkers of the 20th century are:

Kurt Gödel and Alan Turing.
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Examples of programs (continued):

R+
1

onmlhijk

��

R−
2

onmlhijkeoo
// R+

1
onmlhijkoo

startonmlhijk // R−
1

onmlhijk

��

e // R0
3

onmlhijk // R−
3

onmlhijk

e__???????

// stoponmlhijk

R+
2

onmlhijk // R+
3

onmlhijk

__???????

A program which computes the function

f(m) = least n ≥ m such that g(n) = 0.

Here g : N → N is called an oracle.

Note that f and g need not be computable.

Definition. Given f, g : N → N,

we say that f is Turing reducible to g

if f is computable using g as an oracle.

This concept is abbreviated f ≤T g.

Clearly ≤T is reflexive and transitive.
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More generally, consider functions
f : C → D where C and D are
spaces of finite combinatorial objects.

Via Gödel numbering, we may “encode”
such an f as a function f∗ : N → N.

The encoding method may be chosen
on an ad hoc basis.

For example, a function
f : Z × Z → {a1, . . . , ak} may be encoded as
f∗ : N → N where f∗(n) = i if
n = 3p5q7r11s and f((−1)pq, (−1)rs) = ai,
otherwise f∗(n) = 0.

Note that f and f∗

contain “the same information.”

In this way, our concepts of
computability / oracles / Turing reducibility

may be extended to arbitrary functions
f : C → D where f , C, D are as above.

It can be shown that the choice of an
encoding method does not matter.
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Symbolic Dynamics:

We begin with the 1-dimensional case.

A dynamical system consists of

a nonempty set X (the set of states)

plus a mapping T : X → X

(the state transition operator).

Throughout this talk we assume that X is

compact and metrizable. We also assume

that T is continuous, one-to-one, and onto.

Example. Let A be a finite set of symbols.

AZ is the set of bi-infinite sequences of

symbols from A. The shift operator

S : AZ → AZ is given by S(x)(n) = x(n + 1)

for all x ∈ AZ.

The dynamical system consisting of the

compact metrizable space AZ and the shift

operator S is known as the full shift on A.
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Let X be a nonempty closed subset of AZ

which is invariant under the shift operator,

i.e., x ∈ X ⇐⇒ S(x) ∈ X for all x.

The dynamical system consisting of the

compact metrizable space X together with

the shift operator S (actually S ↾ X)

is known as a subshift on A.

It is a subsystem of the full shift on A.

There are many different kinds of subshifts.

Subshifts are very useful for describing

the behavior of dynamical systems in general.

The study of subshifts for their own sake is

called symbolic dynamics.

References:

Mike Boyle, Algebraic aspects of symbolic dynamics, in
Topics in Symbolic Dynamics and Applications,
London Mathematical Society Lecture Notes Series,
2000, pages 57–88.

Douglas Lind and Brian Marcus, An Introduction to

Symbolic Dynamics and Coding, Cambridge University
Press, 1995, XVI + 495 pages.
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Every subshift X ⊆ AZ is defined by a set of

excluded words. Namely, for an appropriate

set E of finite sequences of symbols from A,

X = {x ∈ AZ | x contains no consecutive

subsequence belonging to E}.

If E is finite, we say that X is of finite type.

Subshifts of finite type have been studied

extensively. It is easy to see that

every 1-dimensional subshift of finite type

contains periodic points.

If E is recursive (computable), then X is Π0
1.

Cenzer/Dashti/King 2007 have constructed

a 1-dimensional Π0
1 subshift which contains

no recursive points, hence no periodic points.

Miller 2008 has shown that the Muchnik

degrees of 1-dimensional Π0
1 subshifts are

precisely the Muchnik degrees in Pw.

We now turn to the 2-dimensional case.
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As before, let A be a finite set of symbols.

Let AZ×Z be the set of doubly bi-infinite

double sequences of symbols from A.

This is again a compact metrizable space.

Points of AZ×Z may be viewed as tilings of

the plane, in the sense of Wang 1961.

Tiling problems were studied by logicians

during the years 1960–1980.

The connection with dynamical systems

was noticed only relatively recently.

A 2-dimensional dynamical system

consists of a nonempty set X and

a commuting pair of maps T1, T2 : X → X.

As before we assume X compact metrizable,

T1, T2 continuous one-to-one onto.

The full 2-dimensional shift on A is the

dynamical system consisting of AZ×Z with

shift operators S1, S2 : AZ×Z → AZ×Z given by

S1(x)(m, n) = x(m + 1, n) and

S2(x)(m, n) = x(m, n + 1).
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A 2-dimensional subshift on A is

a nonempty closed set X ⊆ AZ×Z

which is invariant under S1 and S2.

Note that (X, S1, S2) is again a 2-dimensional

dynamical system. It is a subsystem of

the full 2-dimensional shift on A.

As in the 1-dimensional case, every

2-dimensional subshift X is defined by

a set E of excluded configurations.

If E is finite, X is said to be of finite type.

Here, by a configuration we mean

a “2-dimensional word,” i.e., a member of

A{1,...,r}×{1,...,r} for some positive integer r.

2-dimensional subshifts of finite type are

important in dynamical systems theory.

An example is the Ising model

in mathematical physics.
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History:

Berger 1966 answered a question of Wang

1961 by constructing a 2-dimensional subshift

of finite type with no periodic points.

Berger 1966 showed that it is undecidable

whether a given finite set of excluded

configurations defines a (nonempty!)

2-dimensional subshift.

Myers 1974 constructed

a 2-dimensional subshift of finite type

with no recursive points.

Hochman/Meyerovitch 2007 proved:

a real number h ≥ 0 is the entropy of

a 2-dimensional subshift of finite type if and

only if h is right recursively enumerable.

This means that h is the limit of a recursive

decreasing sequence of rational numbers.
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Using the methods of Robinson 1971 and

Myers 1974, I have proved:

Theorem 1 (Simpson 2007). The Muchnik

degrees of 2-dimensional subshifts of finite

type are the same as the Muchnik degrees of

nonempty Π0
1 subsets of {0,1}N.

This theorem is useful, because we can then

apply known results from recursion theory to

study 2-dimensional subshifts of finite type.

Below we shall present one such application.

Our application will be stated purely in terms

of 2-dimensional subshifts of finite type,

with no mention of Muchnik degrees

and no mention of recursion theory.
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To state our application, we need some

easy definitions which make perfect sense

for all dynamical systems.

Definition. Let X and Y be 2-dimensional

subshifts on k and l symbols respectively.

The Cartesian product X × Y

and the disjoint union X + Y

are 2-dimensional subshifts

on kl and k + l symbols respectively.

Definition. Let (X, S1, S2) be a 2-dimensional

subshift on k symbols. Let a, b, c, d be integers

with ad − bc 6= 0. Then, the system

(X, Sa
1Sb

2, Sc
1Sd

2) is canonically isomorphic to

a 2-dimensional subshift on k|ad−bc| symbols.

Definition. If U is a set of 2-dimensional

subshifts, let cl(U) be the closure of U under

the above operations.
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Definition. If X and Y are 2-dimensional
subshifts, a shift morphism from X to Y is
a continuous mapping F : X → Y

which commutes with the shift operators.

In other words, F(S1(x)) = S1(F(x))
and F(S2(x)) = S2(F(x)) for all x ∈ X.

Now for the application.

Theorem 2 (Simpson 2007).
There is an infinite set W
of 2-dimensional subshifts of finite type,
such that for any partition U ,V of W,
and for any X ∈ cl(U) and Y ∈ cl(V),
there is no shift morphism
from X to Y or vice versa.

Theorem 2 follows from Theorem 1 plus
a previously known recursion-theoretic result:

There is an infinite set of
nonempty Π0

1 subsets of {0,1}N

whose Muchnik degrees are independent.

This known recursion-theoretic result
is proved by means of a priority argument.
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We shall now discuss some ingredients of

Theorems 1 and 2 and their proofs.

The essential concept from recursion theory

is as follows.

A recursive functional is a mapping F

from a subset of {0,1}N to a subset of {0,1}N

which is defined by a finite, deterministic,

computer program P in the following way:

For all points x,∈ {0,1}N and y ∈ {0,1}N,

F(x) = y if and only if for each n ∈ N

the run of the program P with input n

using x as a Turing oracle

eventually halts with output y(n).

Instead of the Cantor space {0,1}N

we may use any of the spaces AZ or AZ×Z

where A is a finite set of symbols.
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Let X and Y be subsets of

any of the spaces {0,1}N or AZ or AZ×Z.

X and Y are recursively homeomorphic if

there exists a recursive functional F

with a recursive inverse F−1

such that X ⊆ dom(F) and Y ⊆ rng(F)

and F maps X one-to-one onto Y .

Y is Muchnik reducible to X if

for each x ∈ X there exists

a recursive functional F such that

x ∈ dom(F) and F(x) ∈ Y .

X and Y are Muchnik equivalent if

each is Muchnik reducible to the other.

Clearly recursive homeomorphism implies

Muchnik equivalence, but the converse

does not hold.

A Muchnik degree is an equivalence class

under Muchnik equivalence.
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A subset of AZ×Z or of AZ or of {0,1}N

is recursively closed if it is the complement

of the union of a recursive sequence of

basic open sets.

Here a basic open set is any set

of the form Nσ = {x | x ↾ dom(σ) = σ}

where σ is a finite function.

By definition, a set is Π0
1 if and only if it is

recursively closed.

Clearly the spaces AZ×Z and AZ and {0,1}N

are recursively homeomorphic to each other.

Hence, Π0
1 sets in any of them are recursively

homeomorphic to Π0
1 sets in all of them.

Clearly subshifts of finite type are Π0
1. More

generally, any subshift defined by a recursive

sequence of excluded configurations is Π0
1.
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The Muchnik degrees of all nonempty Π0
1

subsets of {0,1}N under Muchnik reducibility

form a countable distributive lattice, Pw.

It is known that Pw is structurally rich.

For instance, every nonzero degree in Pw

is join-reducible in Pw (Binns 2003).

Moreover, every countable distributive lattice

is lattice-embeddable in every nontrivial initial

segment of Pw (Binns/Simpson 2004).

Theorem 1 says that the Muchnik degrees of

2-dimensional subshifts of finite type are

precisely the Muchnik degrees in Pw.

By contrast, all 1-dimensional subshifts of

finite type are of Muchnik degree zero.

Thus, the 2-dimensional case is much more

complicated than the 1-dimensional case.
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Let X and Y be 2-dimensional subshifts.

A basic fact concerning shift morphisms:

Each shift morphism F : X → Y is describable

in a very simple manner as a block code.

This means that F(x)(m, n) depends only on

x(m± i, n± j), i, j ∈ {0, . . . , r} for some fixed r.

In particular, each shift morphism is given by

a recursive functional. Thus, the existence of

a shift morphism from X to Y implies that

Y is Muchnik reducible to X.

Define X ≥ Y if there exists a shift morphism

from X to Y . Define X ≡ Y if X ≥ Y and

Y ≥ X. The ≡-equivalence classes form a

distributive lattice. We have:

Theorem 3 (Simpson 2007). There is a

canonical lattice homomorphism of the lattice

of ≡-equivalence classes of 2-dimensional

subshifts of finite type, onto the lattice Pw.

In all of these lattices, the supremum and

infimum are given by X × Y and X + Y .
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If X is a 2-dimensional subshift of finite type,

there are surely some interesting relationships

between the dynamical properties of X and

the Muchnik degree of X.

These relationships remain to be explored.

Moreover, Pw contains a number of

specific, natural, weak degrees which are

linked to various interesting topics in

the foundations of mathematics and

the foundations of computer science.

• algorithmic randomness

• reverse mathematics

• almost everywhere domination

• diagonal nonrecursiveness

• hyperarithmeticity

• resource-bounded computational complexity

• Kolmogorov complexity

• effective Hausdorff dimension

• subrecursive hierarchies
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Some examples of Muchnik degrees in Pw:

0 = the bottom degree in Pw

= the Muchnik degree of {x | x is recursive}

1 = the top degree in Pw = the Muchnik degree of

{x | x is a completion of Peano Arithmetic}

r1 = Muchnik degree of {x ∈ {0,1}N | x is random}

(in the sense of P. Martin-Löf)

r2 = Muchnik degree of {x ∈ {0,1}N | x is random

relative to 0′, the Halting Problem}

d = the Muchnik degree of

{f ∈ NN | f is diagonally nonrecursive}

(i.e., f(n) 6≃ ϕ
(1)
n (n) for all n)

dREC = the Muchnik degree of {f ∈ NN | f is

diagonally nonrecursive and recursively bounded}

(i.e., f is bounded by a recursive function)

dα = the Muchnik degree of {f ∈ NN | f is

diagonally nonrecursive and α-recursively bounded}

(bounded at level α of the Wainer hierarchy), α ≤ ε0

a = the Muchnik degree of a recursively enumerable set

hα = the Muchnik degree of 0(α), α < ωCK
1

h∗
α = the “blurred” version of hα, α < ωCK

1

b = the Muchnik degree of

{x ∈ {0,1}N | x is almost everywhere dominating}
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A picture of Pw. Here a = any r.e. degree,

h = hyperarithmeticity, r = randomness,

b = almost everywhere domination,

d = diagonal nonrecursiveness.
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By Theorem 1, each of the black dots

in the above picture is the Muchnik degree

of a 2-dimensional subshift of finite type.

Thus we have apparently uncovered

some interesting classes of

2-dimensional subshifts of finite type.

A basic result concerning Pw is as follows:

Embedding Lemma (Simpson 2004).

Let s be the Muchnik degree of a Σ0
3 set.

Then inf(s, 1) belongs to Pw.

Combining this with Theorem 1, we obtain:

Theorem 4 (Simpson 2007). Let s be

the Muchnik degree of a Σ0
3 set. Then there

exists a 2-dimensional subshift of finite type

whose Muchnik degree is inf(s, 1).
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THE END
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