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Abstract.

Mass Problems:

A set P ⊆ {0,1}N may be viewed as a mass problem, i.e., a
decision problem with more than one solution. By definition, the
solutions of P are the elements of P . A mass problem is said to
be solvable if at least one of its solutions is recursive. A mass
problem P is said to be Muchnik reducible to a mass problem Q if
for each solution of Q there exists a solution of P which is Turing
reducible to the given solution of Q. A Muchnik degree is an
equivalence class of mass problems under mutual Muchnik
reducibility.

A set P ⊆ {0,1}N is said to be Π0
1 if it is effectively closed, i.e., it

is the complement of the union of a recursive sequence of basic
open sets. Let Pw be the lattice of Muchnik degrees of mass
problems associated with nonempty Π0

1 subsets of {0,1}N. The
lattice Pw has been investigated by the speaker and others. It is
known that Pw contains many specific, natural Muchnik degrees
which are related to various topics in the foundations of
mathematics. Among these topics are algorithmic randomness,
reverse mathematics, almost everywhere domination,
hyperarithmeticity, resource-bounded computational complexity,
Kolmogorov complexity, and subrecursive hierarchies.

Symbolic Dynamics:

Let A be a finite set of symbols. The full two-dimensional shift

on A is the dynamical system consisting of the natural action of
the group Z × Z on the compact space AZ×Z. A two-dimensional

subshift is a nonempty closed subset of AZ×Z which is invariant
under the action of Z × Z. A two-dimensional subshift is said to
be of finite type if it is defined by a finite set of excluded
configurations. The two-dimensional subshifts of finite type are
known to form an important class of dynamical systems, with
connections to mathematical physics, etc.
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Abstract, continued.

Clearly every two-dimensional subshift of finite type is a nonempty
Π0

1 subset of AZ×Z, hence its Muchnik degree belongs to Pw.
Conversely, we prove that every Muchnik degree in Pw is the
Muchnik degree of a two-dimensional subshift of finite type. The
proof of this result uses tilings of the plane. We present an
application of this result to symbolic dynamics. Our application is
stated purely in terms of two-dimensional subshifts of finite type,
with no mention of Muchnik degrees.

Intuitionism:

Historically, the study of mass problems originated from
intuitionistic considerations. Kolmogorov 1932 proposed to view
intuitionism as a “calculus of problems.” Muchnik 1963
introduced Muchnik degrees as a rigorous elaboration of
Kolmogorov’s proposal. As noted by Muchnik, the lattice of all
Muchnik degrees is Brouwerian.

The question arises, is the sublattice Pw Brouwerian? We prove
that it is not. The proof uses our adaptation of a technique of
Posner and Robinson.
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Part 1: SYMBOLIC DYNAMICS

We begin with the 1-dimensional case.

A dynamical system consists of

a nonempty set X (the set of states)

plus a mapping T : X → X

(the state transition operator).

Throughout this talk we assume that X is

compact and metrizable. We also assume

that T is continuous, one-to-one, and onto.

Example. Let A be a finite set of symbols.

AZ is the set of bi-infinite sequences of

symbols from A. The shift operator

S : AZ → AZ is given by S(x)(n) = x(n + 1)

for all x ∈ AZ.

The dynamical system consisting of the

compact metrizable space AZ and the shift

operator S is known as the full shift on A.
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Let X be a nonempty closed subset of AZ

which is invariant under the shift operator,

i.e., x ∈ X ⇐⇒ S(x) ∈ X for all x.

The dynamical system consisting of the

compact metrizable space X together with

the shift operator S (actually S ↾ X)

is known as a subshift on A.

It is a subsystem of the full shift on A.

There are many different kinds of subshifts.

Subshifts are very useful for describing

the behavior of dynamical systems in general.

The study of subshifts for their own sake is

called symbolic dynamics.
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Every subshift X ⊆ AZ is defined by a set of

excluded words. Namely, for an appropriate

set E of finite sequences of symbols from A,

X = {x ∈ AZ | x contains no consecutive

subsequence belonging to E}.

If E is finite, we say that X is of finite type.

Subshifts of finite type have been studied

extensively. It is easy to see that

every 1-dimensional subshift of finite type

contains periodic points.

Note: E is recursive if and only if X is Π0
1.

Cenzer/Dashti/King 2007 have constructed

a 1-dimensional Π0
1 subshift which contains

no recursive points, hence no periodic points.

Many questions regarding 1-dimensional Π0
1

subshifts remain open.

We now turn to the 2-dimensional case.
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As before, let A be a finite set of symbols.

Let AZ×Z be the set of doubly bi-infinite

double sequences of symbols from A.

This is again a compact metrizable space.

Points of AZ×Z may be viewed as tilings of

the plane, in the sense of Wang 1961.

Tiling problems were studied by logicians

during the years 1960–1980.

The connection with dynamical systems

was noticed only relatively recently.

A 2-dimensional dynamical system

consists of a nonempty set X and

a commuting pair of maps T1, T2 : X → X.

As before we assume X compact metrizable,

T1, T2 continuous one-to-one onto.

The full 2-dimensional shift on A is the

dynamical system consisting of AZ×Z with

shift operators S1, S2 : AZ×Z → AZ×Z given by

S1(x)(m, n) = x(m + 1, n) and

S2(x)(m, n) = x(m, n + 1).
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A 2-dimensional subshift on A is

a nonempty closed set X ⊆ AZ×Z

which is invariant under S1 and S2.

Note that (X, S1, S2) is again a 2-dimensional

dynamical system. It is a subsystem of

the full 2-dimensional shift on A.

As in the 1-dimensional case, every

2-dimensional subshift X is defined by

a set E of excluded configurations.

If E is finite, X is said to be of finite type.

Here, by a configuration we mean

a “2-dimensional word,” i.e., a member of

A{1,...,r}×{1,...,r} for some positive integer r.

2-dimensional subshifts of finite type are

important in dynamical systems theory.

An example is the Ising model

in mathematical physics.
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History:

Berger 1966 answered a question of Wang

1961 by constructing a 2-dimensional subshift

of finite type with no periodic points.

Berger 1966 showed that it is undecidable

whether a given finite set of excluded

configurations defines a (nonempty!)

2-dimensional subshift.

Myers 1974 constructed

a 2-dimensional subshift of finite type

with no recursive points.

Hochman/Meyerovitch 2007 proved:

a real number h ≥ 0 is the entropy of

a 2-dimensional subshift of finite type if and

only if h is right recursively enumerable.

This means that h is the limit of a recursive

decreasing sequence of rational numbers.
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Using the methods of Robinson 1971 and

Myers 1974, I have proved:

Theorem 1 (Simpson 2007). The Muchnik

degrees of 2-dimensional subshifts of finite

type are the same as the Muchnik degrees of

nonempty Π0
1 subsets of {0,1}N.

This theorem is useful, because we can then

apply known results from recursion theory to

study 2-dimensional subshifts of finite type.

Below we shall present one such application.

Our application will be stated purely in terms

of 2-dimensional subshifts of finite type,

with no mention of Muchnik degrees

and no mention of recursion theory.
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To state our application, we need some

easy definitions which make perfect sense

for all dynamical systems.

Definition. Let X and Y be 2-dimensional

subshifts on k and l symbols respectively.

The Cartesian product X × Y

and the disjoint union X + Y

are 2-dimensional subshifts

on kl and k + l symbols respectively.

Definition. Let (X, S1, S2) be a 2-dimensional

subshift on k symbols. Let a, b, c, d be integers

with ad − bc 6= 0. Then, the system

(X, Sa
1Sb

2, Sc
1Sd

2) is canonically isomorphic to

a 2-dimensional subshift on k|ad−bc| symbols.

Definition. If U is a set of 2-dimensional

subshifts, let cl(U) be the closure of U under

the above operations.
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Definition. If X and Y are 2-dimensional
subshifts, a shift morphism from X to Y is
a continuous mapping F : X → Y

which commutes with the shift operators.

In other words, F(S1(x)) = S1(F(x))
and F(S2(x)) = S2(F(x)) for all x ∈ X.

Now for the application.

Theorem 2 (Simpson 2007).
There is an infinite set W
of 2-dimensional subshifts of finite type,
such that for any partition U ,V of W,
and for any X ∈ cl(U) and Y ∈ cl(V),
there is no shift morphism
from X to Y or vice versa.

Theorem 2 follows from Theorem 1 plus
a previously known recursion-theoretic result:

There is an infinite set of
nonempty Π0

1 subsets of {0,1}N

whose Muchnik degrees are independent.

This known recursion-theoretic result
is proved by means of a priority argument.
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We now discuss some ingredients of

Theorems 1 and 2 and their proofs.

A subset of AZ×Z or of AZ or of {0,1}N

is effectively closed if it is the complement

of the union of a recursive sequence of basic

open sets. Here a basic open set is any set of

the form Nσ = {x | x ↾ dom(σ) = σ}

where σ is a finite partial function.

By definition, a set is Π0
1 if and only if it is

effectively closed.

The spaces AZ×Z and AZ and {0,1}N are

recursively homeomorphic to each other.

Hence, Π0
1 sets in any of them are recursively

homeomorphic to Π0
1 sets in all of them.

Clearly subshifts of finite type are Π0
1. More

generally, any subshift defined by a recursive

sequence of excluded configurations is Π0
1.
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Let X and Y be sets.

Y is Muchnik reducible to X if (∀x ∈ X)

(∃ partial recursive functional F) (F(x) ∈ Y ).

X and Y are Muchnik equivalent if each is

Muchnik reducible to the other.

Recursively homeomorphic sets are

Muchnik equivalent, but not conversely.

A Muchnik degree is an equivalence class

under Muchnik equivalence.

The Muchnik degrees of all nonempty Π0
1

subsets of {0,1}N under Muchnik reducibility

form a distributive lattice, denoted Pw.

It is known that Pw is structurally rich.

Theorem 1 says that the Muchnik degrees of

2-dimensional subshifts of finite type are

precisely the Muchnik degrees in Pw.

By contrast, all 1-dimensional subshifts of

finite type are of Muchnik degree 0.

Thus, the 2-dimensional case is much more

complicated than the 1-dimensional case.
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Let X and Y be 2-dimensional subshifts.

A basic fact concerning shift morphisms:

Each shift morphism F : X → Y is describable

in a very simple manner as a block code.

This means that F(x)(m, n) depends only on

x(m± i, n± j), i, j ∈ {0, . . . , r} for some fixed r.

In particular, each shift morphism is given by

a recursive functional. Thus, the existence of

a shift morphism from X to Y implies that

Y is Muchnik reducible to X.

Define X ≥ Y if there exists a shift morphism

from X to Y . Define X ≡ Y if X ≥ Y and

Y ≥ X. The ≡-equivalence classes form a

distributive lattice. We have:

Theorem 3 (Simpson 2007). There is a

canonical lattice homomorphism of the lattice

of ≡-equivalence classes of 2-dimensional

subshifts of finite type, onto the lattice Pw.

In all of these lattices, the supremum and

infimum are given by X × Y and X + Y .
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If X is a 2-dimensional subshift of finite type,

there are surely some interesting relationships

between the dynamical properties of X and

the Muchnik degree of X.

These relationships remain to be explored.

Moreover Pw is structurally rich

and contains many specific, natural degrees

which are motivated by the idea of

mass problems in recursion theory.

These specific, natural degrees in Pw

are linked to foundational topics:

• algorithmic randomness

• reverse mathematics

• almost everywhere domination

• diagonal nonrecursiveness

• hyperarithmeticity

• resource-bounded computational complexity

• Kolmogorov complexity

• subrecursive hierarchies
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Some examples of Muchnik degrees in Pw:

0 = the bottom degree in Pw

= the Muchnik degree of {x | x is recursive}

1 = the top degree in Pw = the Muchnik degree of

{x | x is a completion of Peano Arithmetic}

r1 = Muchnik degree of {x ∈ {0,1}N | x is random}

(in the sense of Martin-Löf)

r2 = Muchnik degree of {x ∈ {0,1}N | x is random

relative to 0′, the Halting Problem}

d = the Muchnik degree of

{f ∈ NN | f is diagonally nonrecursive}

(i.e., f(n) 6≃ ϕ
(1)
n (n) for all n)

dREC = the Muchnik degree of {f ∈ NN | f is

diagonally nonrecursive and recursively bounded}

(i.e., f is bounded by a recursive function)

dα = the Muchnik degree of {f ∈ NN | f is

diagonally nonrecursive and α-recursively bounded}

(bounded at level α of the Wainer hierarchy), α ≤ ε0

a = the Muchnik degree of a recursively enumerable set

hα = the Muchnik degree of 0(α), α < ωCK
1

h∗
α = the blurred version of hα, α < ωCK

1

b = the Muchnik degree of

{f ∈ NN | f is almost everywhere dominating}
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A picture of Pw. Here a = any r.e. degree,

h = hyperarithmeticity, r = randomness,

b = almost everywhere domination,

d = diagonal nonrecursiveness.
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By Theorem 1, each of the black dots

in the above picture is the Muchnik degree

of a 2-dimensional subshift of finite type.

Thus we have apparently uncovered

some interesting classes of

2-dimensional subshifts of finite type.

A basic result concerning Pw is as follows:

Embedding Lemma (Simpson 2004).

Let s be the Muchnik degree of a Σ0
3 set.

Then inf(s, 1) belongs to Pw.

Combining this with Theorem 1, we obtain:

Theorem 4 (Simpson 2007). Let s be

the Muchnik degree of a Σ0
3 set. Then there

exists a 2-dimensional subshift of finite type

whose Muchnik degree is inf(s, 1).
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Part 2: INTUITIONISM

Let L be a distributive lattice with 0 and 1.

For a, b ∈ L let a ⇒ b be the unique minimum
x ∈ L such that sup(a, x) ≥ b, if it exists.

L is Brouwerian if a ⇒ b exists for all a, b ∈ L.

Fact: Each Brouwerian lattice is a model of
intuitionistic propositional calculus:

a ∧ b = sup(a, b), a ∨ b = inf(a, b),

a ⇒ b as above, ¬ a = (a ⇒ 1),

a ⊢ b if and only if a ≥ b.

Completeness Theorem (Tarski 1938):

A first-order propositional formula is
intuitionistically valid if and only if it is
identically 0 in all Brouwerian lattices.

Medvedev 1955: the lattice of all Medvedev
degrees is Brouwerian.

Muchnik 1963: the lattice of all Muchnik
degrees is Brouwerian.
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Historically, mass problems originated from
intuitionistic considerations of this kind.

Kolmogorov 1932 informally proposed to view
intuitionism as a “calculus of problems”. This
is the famous Brouwer/Heyting/Kolmogorov
or BHK interpretation of intuitionism.
See Troelstra/van Dalen, §§ 1.3.1, 1.5.3.

Medvedev 1955 (Kolmogorov’s student)
introduced Medvedev degrees as a rigorous
elaboration of Kolmogorov’s proposal.
He noted that the lattice of all Medvedev
degrees is Brouwerian.

Muchnik 1963 introduced Muchnik degrees
as an alternative rigorous elaboration of
Kolmogorov’s proposal. He noted that the
lattice of all Muchnik degrees is Brouwerian.

Skvortsova 1988.

Sorbi 1990s.

Terwijn 2005 onward.
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Starting in 1999 Simpson and others studied

the lattices Ps (respectively Pw) of Medvedev

(respectively Muchnik) degrees of

nonempty Π0
1 subsets of 2ω.

The study of Ps and especially Pw has been

fruitful, with many specific, natural examples

related to foundationally interesting topics.

Also, Ps and Pw are distributive with 0 and 1.

Therefore, the question arises:

Are Ps and Pw Brouwerian?

Theorem 5 (Simpson 2007).

Pw is not Brouwerian.

It remains open whether Ps is Brouwerian.

Terwijn 2005 proved that the dual of Ps is

not Brouwerian.

It remains open whether the dual of Pw is

Brouwerian.
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We sketch the proof of Theorem 5.

Let ≤T denote Turing reducibility.

Let ≤w denote Muchnik reducibility.

Lemma 1. Assume Q is Π0
1 and

Q 6≤w {f} and 0 <T f <T 0′.

Then, we can find g such that

Q 6≤w {g} and 0 <T g <T 0′ and f ⊕ g ≡T 0′.

Proof. We adapt the technique of

Posner/Robinson 1981. Actually, we

prove a more general result. Namely:

Let S be Σ0
3, let f be hyperimmune such that

S 6≤w {f}, and let h be such that f ⊕ 0′ ≤T h.

Then, we can find g such that S 6≤w {g} and

f ⊕ g ≡T g′ ≡T g ⊕ 0′ ≡T h. �

To prove Theorem 5, let a be any Turing

degree such that a ∈ Pw and 0 < a < 1.

By Lemma 1 plus the Embedding Lemma

of Simpson 2004, Pw |= ¬∃ (a ⇒ 1). �
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