Sendai Logic Spring Workshop 2008 Program

20 Feb.

14:00-14:45 T. Sato

Basic algebra in second order arithmetic

15:00-15:45 K. Yokoyama

Formalizing non-standard arguments in second order arithmetic

16:00-17:00 K. Tadaki

Equivalent characterizations of partial randomness for a recursively enumerable real

21 Feb.

Y.Horihata
Complex analysis and Reverse mathematics
C. G. Liu
TBA
lunch time
T. Nemoto
Determinacy of Wadge classes and induction axioms of second
order arithmetic
S. Yatabe
On an arithmetic in a set theory within fuzzy logic
S. G. Simpson
Recent Aspects of Mass Problems: Symbolic Dynamics
and Intuitionism

Abstracts (20 Feb.)

Basic algebra in second order arithmetic

Takashi Sato, a joint work with K.Yokoyama and T.Yamazaki

We introduce some results on basic algebra in the context of Reverse Mathematics. For example, the existence of the center or the commutator subgroup of any countable group is equivalent to arithmetical comprehension axioms. Although this is already proved by R. Solomon, but we give a new proof.

Formalizing non-standard arguments in second order arithmetic Keita Yokoyama

We introduce the systems ns-ACA₀ and ns-WKL₀ of non-standard second order arithmetic in which we can formalize non-standard arguments in ACA₀ and WKL₀, respectively. Then, we give some transformations from non-standard proofs in non-standard second order arithmetic into proofs in second order arithmetic.

Equivalent characterizations of partial randomness for a recursively enumerable real

Kotaro Tadaki

We give several equivalent characterizations of partial randomness for a recursively enumerable real by generalizing the results on equivalent characterizations of randomness for a recursively enumerable real over the notion of partial randomness.

Abstracts (21 Feb.)

Complex analysis and Reverse mathematics

Yoshihiro Horihata, a joint work with K.Yokoyama

We study complex analysis in the context of weak subsystems of second order arithmetic. We are mainly concerned with integrability and singularities of holomorphic functions. Then, we develop a part of complex analysis concerned with Picard's little theorem. We show that Picard's little theorem is provable from WKL_0 plus a version of the Riemann mapping theorem. Since a full version of the Riemann mapping theorem is provable in ACA_0 , we can prove Picard's little theorem in ACA_0 .

Determinacy of Wadge classes and induction axioms of second order arithmetic

Takako Nemoto

In this talk, we treat determinacy of Wadge classes between Σ_1^0 and Δ_3^0 . In particlar, we focus on the relationship between determinacy statement and induction axioms. Main results are as follows:

1. $\mathsf{Bisep}(\Sigma_1^0, \Delta_1^0)$ is equivalent to weak König's lemma plus Σ_1^0 -induction over RCA_0^* , where $\mathsf{Bisep}(\Sigma_1^0, \Delta_1^0)$ is the Wadge class just above Σ_1^0 .

2. $\mathsf{Bisep}(\Sigma_2^0, \Delta_1^0)$ is equivalent to arithmetical transfinite recursion plus Σ_1^1 -induction over RCA_0^* .

On an arithmetic in a set theory within fuzzy logic

Shunsuke Yatabe

In H, a set theory with the comprehension principle within Lukasiewicz infnite-valued predicate logic, we prove that a statement which can be interpreted as " there is an infnite descending sequence of initial segments of ω " is truth value 1 in any model of H, and we prove an analogy of Hájek's theorem with a very simple procedure.