Degrees of unsolvability of
 2-dimensional subshifts of finite type

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University
http://www.math.psu.edu/simpson

August 21, 2007

This is an abstract and references for a talk to be given at a Dynamical Systems Workshop at the Pennsylvania State University, Department of Mathematics, October 18-21, 2007.

Abstract

We apply some fundamental concepts and results from mathematical logic in order to obtain an apparently new counterexample in symbolic dynamics. Two sets X and Y are said to be strongly equivalent if there exist partial recursive functionals from X into Y and vice versa. The strong degree of X is the equivalence class of X under strong equivalence. There is an extensive recursiontheoretic literature on the lattice of strong degrees of nonempty Π_{1}^{0} subsets of the Cantor space. This lattice is known as \mathcal{P}_{s}. We prove that \mathcal{P}_{s} consists precisely of the strong degrees of 2-dimensional subshifts of finite type. We use this result to obtain an infinite collection of 2-dimensional subshifts of finite type which are, in a certain sense, mutually incompatible.

References

[1] Stephen Binns and Stephen G. Simpson. Embeddings into the Medvedev and Muchnik lattices of Π_{1}^{0} classes. Archive for Mathematical Logic, 43:399414, 2004.
[2] Albert A. Muchnik. On strong and weak reducibilities of algorithmic problems. Sibirskii Matematicheskii Zhurnal, 4:1328-1341, 1963. In Russian.
[3] Stephen G. Simpson. Medvedev degrees of 2-dimensional subshifts of finite type. Ergodic Theory and Dynamical Systems, to appear. Preprint, 8 pages, 1 May 2007.
[4] Stephen G. Simpson. Mass problems and randomness. Bulletin of Symbolic Logic, 11:1-27, 2005.
[5] Stephen G. Simpson. An extension of the recursively enumerable Turing degrees. Journal of the London Mathematical Society, 75:287-297, 2007.
[6] Stephen G. Simpson. Mass problems and almost everywhere domination. Mathematical Logic Quarterly, 53:483-492, 2007.
[7] Stephen G. Simpson. Mass problems and intuitionism. Preprint, 9 pages, 1 August 2007, submitted for publication.

