Medvedev and Muchnik Degrees of Nonempty Π_1^0 Subsets of 2^{ω}

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University
http://www.math.psu.edu/simpson/

Draft: April 18, 2001

This research was partially supported by NSF grant DMS-0070718. Subject Classification: 03D30, 03D65.

This is a report for my presentation at the upcoming meeting on *Berechen-barkeitstheorie* ("Computability Theory"), Oberwolfach, January 21–27, 2001.

We use 2^{ω} to denote the space of infinite sequences of 0's and 1's. For $X, Y \in 2^{\omega}$, $X \leq_T Y$ means that X is Turing reducible to Y. For $P, Q \subseteq 2^{\omega}$ we say that P is Muchnik reducible to Q, abbreviated $P \leq_w Q$, if for all $Y \in Q$ there exists $X \in P$ such that $X \leq_T Y$. We say that P is Medvedev reducible to Q, abbreviated $P \leq_M Q$, if there exists a recursive functional $\Phi: Q \to P$. Note that $P \leq_M Q$ implies $P \leq_w Q$, but not conversely.

Sorbi [13] gives a useful survey of Medvedev and Muchnik degrees of arbitrary subsets of 2^{ω} . Here we initiate a study of Medvedev and Muchnik degrees of nonempty Π_1^0 subsets of 2^{ω} . Theorems 1 and 2 below have been proved in collaboration with my Ph. D. student Stephen Binns.

Let \mathcal{P} be the set of nonempty Π_1^0 subsets of 2^{ω} . Let \mathcal{P}_M (respectively \mathcal{P}_w) be the set of Medvedev (respectively Muchnik) degrees of members of \mathcal{P} , ordered by Medvedev (respectively Muchnik) reducibility. We say that $P \in \mathcal{P}$ is Medvedev complete (respectively Muchnik complete) if $P \geq_M Q$ (respectively $P \geq_w Q$) for all $Q \in \mathcal{P}$. For example, the set of complete extensions of Peano Arithmetic is Medvedev complete. Clearly every Medvedev

complete set is Muchnik complete, but not conversely. \mathcal{P}_M and \mathcal{P}_w are countable distributive lattices with a bottom element, $\mathbf{0}$, the degree of 2^{ω} , and a top element, $\mathbf{1}$, the degree of any Medvedev complete set. The lattice operations are given by $P \times Q = \{X \oplus Y : X \in P \text{ and } Y \in Q\}$ and $P + Q = \{\langle 0 \rangle ^{\frown} X : X \in P\} \cup \{\langle 1 \rangle ^{\frown} Y : Y \in Q\}$. Here $P \times Q$ (respectively P + Q) is the join (respectively meet) of P and Q.

In both \mathcal{P}_M and \mathcal{P}_w , it is easy to see that $P, Q > \mathbf{0}$ implies $P + Q > \mathbf{0}$, but we do not know whether $P, Q < \mathbf{1}$ implies $P \times Q < \mathbf{1}$. In addition, there are many other open problems. For example, we do not know whether the Sacks Density Theorem holds for \mathcal{P}_M or for \mathcal{P}_w . This subject appears to be a rich source of problems for recursion theorists.

Theorem 1 In \mathcal{P}_w , for every $P > \mathbf{0}$, every countable distributive lattice is lattice embeddable below P.

Proof (sketch). We begin by defining infinitary "almost lattice" operations in such a way that, given a recursive sequence $\langle P_i : i \in \omega \rangle$ of members of \mathcal{P} , $\prod_{i \in \omega} P_i$ and $\sum_{i \in \omega} P_i$ are again members of \mathcal{P} . We define the infinite product in the obvious way, $\prod_{i \in \omega} P_i = \{X \in 2^\omega : (X)_i \in P_i \text{ for all } i \in \omega\}$, where $(X)_i(n) = X((n,i))$ for all $n \in \omega$. To define the infinite sum, let $\langle T_i : i \in \omega \rangle$ be a recursive sequence of recursive subtrees of $2^{<\omega}$ such that, for each i, P_i is the set of paths through T_i . Let R be a fixed, Medvedev complete member of P. Let T be a recursive subtree of $2^{<\omega}$ such that R is the set of paths through T. Put $T = \{\tau \cap \langle k \rangle : \tau \in T, k \in \{0,1\}, \tau \cap \langle k \rangle \notin T\}$. Let $\langle \sigma_i : i \in \omega \rangle$ be a recursive enumeration of T without repetition. We define the infinite sum $\sum_{i \in \omega} P_i$ to be the set of paths through $T^* = T \cup \{\sigma_i \cap \tau : i \in \omega, \tau \in T_i\}$.

To prove the theorem, construct a recursive sequence $\langle Q_i : i \in \omega \rangle$ of members of \mathcal{P} such that $X \not\leq_T Y$ for all $X \in Q_i$, $Y \in Q_j$, $i \neq j$. This is a finite injury priority construction, similar to that of Jockusch/Soare [6, Theorem 4.7]. For $i \in \omega$ define $\hat{Q}_i = \sum_{j \neq i} Q_j$. For recursive $A \subseteq \omega$ define $\hat{Q}(A) = \prod_{i \in A} \hat{Q}_i$. We have $\hat{Q}(A) \in \mathcal{P}$ and $\hat{Q}(A \cup B) \equiv_w \hat{Q}(A) \times \hat{Q}(B)$ and $\hat{Q}(A \cap B) \equiv_w \hat{Q}(A) + \hat{Q}(B)$. Moreover $A \neq B$ implies $\hat{Q}(A) \not\equiv_w \hat{Q}(B)$. Thus $A \mapsto \hat{Q}(A)$ is a lattice embedding of the lattice of recursive subsets of ω into \mathcal{P}_w . Note also that every countable distributive lattice is lattice embeddable into the lattice of recursive subsets of ω . To push the embedding below P, assume in addition that $X \not\leq_T Y$ for all $X \in P$, $Y \in Q_i$, $i \in \omega$. This property can be obtained by a Sacks preservation strategy. Our lattice embedding below P is given by $A \mapsto \hat{Q}(A) + P$.

It seems likely that Theorem 1 holds with \mathcal{P}_w replaced by \mathcal{P}_M . In this direction we have the following partial result.

Theorem 2 In \mathcal{P}_M , for every $P > \mathbf{0}$, the free countable distributive lattice is lattice embeddable below P, as are the lattice of finite subsets of ω , the lattice of cofinite subsets of ω , and all finite distributive lattices.

Proof (sketch). With notation as before, we have $\hat{Q}(A \cup B) \equiv_M \hat{Q}(A) \times \hat{Q}(B)$ and $\hat{Q}(A \cap B) \equiv_M \hat{Q}(A) + \hat{Q}(B)$, provided $A, B \subseteq \omega$ are finite. Thus $A \mapsto \hat{Q}(A) + P$ is the desired lattice embedding of the lattice of finite subsets of ω into \mathcal{P}_M below P. Note also that every finite distributive lattice is lattice embeddable into the lattice of finite subsets of ω .

Now assume that $\langle Q_i : i \in \omega \rangle$ has the following stronger properties: (1) $X_i \not\leq_T Y$ for all $X_i \in Q_i$, $Y \in \prod_{j \neq i} Q_j$, (2) $X \not\leq_T Y$ for all $X \in P$, $Y \in \prod_{i \in \omega} Q_i$. As before, these properties can be obtained by a finite injury priority argument and a preservation strategy. For $i \in \omega$ define $\check{Q}_i = \prod_{j \neq i} Q_i$. For recursive $A \subseteq \omega$ define $\check{Q}(A) = \sum_{i \in A} \check{Q}_i$. Note that the definition of $\check{Q}(A)$ is dual to that of $\hat{Q}(A)$. We have $\check{Q}(A) \in \mathcal{P}$ and $\check{Q}(A \cap B) \equiv_w \check{Q}(A) \times \check{Q}(B)$ and $\check{Q}(A \cup B) \equiv_w \check{Q}(A) + \check{Q}(B)$. For finite $A, B \subseteq \omega$ we have $\check{Q}(A \cap B) \equiv_M \check{Q}(A) \times \check{Q}(B)$ and $\check{Q}(A \cup B) \equiv_M \check{Q}(A) + \check{Q}(B)$. Thus $\omega \setminus A \mapsto \check{Q}(A) + P$ is the desired lattice embedding of the lattice of cofinite subsets of ω into \mathcal{P}_M below P.

Finally, with Q_i , $i \in \omega$ as above, the Medvedev degrees of $Q_i + P$, $i \in \omega$ freely generate a free distributive sublattice of \mathcal{P}_M below P.

Remark The study of the distributive lattices \mathcal{P}_M and \mathcal{P}_w is in some ways parallel to the study of \mathcal{R}_T , the upper semilattice of Turing degrees of recursively enumerable subsets of ω . (For background on this topic, see Soare [12].) However, as is well known, there are no specific examples of recursively enumerable degrees $\neq \mathbf{0}, \mathbf{0}'$. (See the FOM discussion with Soare [4, July 1999].) In this respect, \mathcal{P}_M and \mathcal{P}_w are much better, as shown by the following two theorems, due to Kučera [7] and Jockusch [5] respectively.

Theorem 3 Among all Muchnik degrees of Π_1^0 subsets of 2^{ω} of positive measure, there is a unique largest one. This particular element of \mathcal{P}_w is $\neq 0, 1$.

Theorem 4 For $k \geq 2$ let DNR_k be the Π_1^0 set of k-valued DNR functions. In the Medvedev degrees \mathcal{P}_M we have $\mathbf{1} \equiv_M DNR_2 >_M DNR_3 >_M \cdots >_M DNR_k >_M \cdots >_M \mathbf{0}$. All of these Medvedev degrees are Muchnik complete.

Simpson [11, Theorem 3.20] proves the following analog of Myhill's Theorem on creative sets (see Rogers [9]). This is closely related to a result of Pour-El/Kripke [8].

Theorem 5 If $P, Q \in \mathcal{P}$ are Medvedev complete, then P and Q are recursively homeomorphic.

Proof (sketch). First we define what it means for $P \in \mathcal{P}$ to be productive. Then we use the Recursion Theorem to prove the following two results: (1) P is productive if and only if P is Medvedev complete. (2) Any two productive sets $P, Q \in \mathcal{P}$ are recursively homeomorphic. The details are in Simpson [11, Section 3].

Simpson [11, Theorem 6.9] applies Theorem 5 plus Jockusch/Soare forcing [6, Theorem 2.4] to prove the following result concerning subsystems of second order arithmetic. (For background on this topic, see Simpson [10].)

Theorem 6 There is a countable ω -model S of WKL₀ with the following property. For all $X, Y \in S$, X is definable from Y over S if and only if $X \leq_T Y$.

References

- [1] S. B. Cooper, T. A. Slaman, and S. S. Wainer, editors. *Computability, Enumerability, Unsolvability: Directions in Recursion Theory*. Number 224 in London Mathematical Society Lecture Notes. Cambridge University Press, 1996. VII + 347 pages.
- [2] H.-D. Ebbinghaus, G.H. Müller, and G.E. Sacks, editors. *Recursion Theory Week*. Number 1141 in Lecture Notes in Mathematics. Springer-Verlag, 1985. IX + 418 pages.
- [3] J.-E. Fenstad, I. T. Frolov, and R. Hilpinen, editors. *Logic, Methodology and Philosophy of Science VIII.* Studies in Logic and the Foundations of Mathematics. Elsevier, 1989. XVII + 702 pages.
- [4] FOM e-mail list. http://www.math.psu.edu/simpson/fom/, September 1997 to the present.

- [5] Carl G. Jockusch, Jr. Degrees of functions with no fixed points. In [3], pages 191–201, 1989.
- [6] Carl G. Jockusch, Jr. and Robert I. Soare. Π_1^0 classes and degrees of theories. Transactions of the American Mathematical Society, 173:35–56, 1972.
- [7] Antonín Kučera. Measure, Π_1^0 classes and complete extensions of PA. In [2], pages 245–259, 1985.
- [8] Marian B. Pour-El and Saul Kripke. Deduction-preserving "recursive isomorphisms" between theories. *Fundamenta Mathematicae*, 61:141–163, 1967.
- [9] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967. XIX + 482 pages.
- [10] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer-Verlag, 1999. XIV + 445 pages.
- [11] Stephen G. Simpson. Π_1^0 sets and models of WKL₀. April 2000. Preprint, 28 pages, to appear.
- [12] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer-Verlag, 1987. XVIII + 437 pages.
- [13] Andrea Sorbi. The Medvedev lattice of degrees of difficulty. In [1], pages 289–312, 1996.