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Symbolic dynamics.

Let G be (Nd,+) or (Zd,+) where d ≥ 1.

Let A be a finite set of symbols.

We endow A with the discrete topology

and AG with the product topology.

The shift action of G on AG is given by

(Sgx)(h) = x(g + h) for g, h ∈ G and x ∈ AG.

A subshift is a nonempty set X ⊆ AG which is

topologically closed and shift-invariant,

i.e., x ∈ X implies Sgx ∈ X for all g ∈ G.

Symbolic dynamics is the study of subshifts.

If X ⊆ AG and Y ⊆ BG are subshifts,

a shift morphism from X to Y is

a continuous mapping Φ : X → Y such that

Φ(Sgx) = SgΦ(x) for all x ∈ X and g ∈ G.

By compactness, any shift morphism Φ is

given by a block code, i.e., a finite mapping

φ : AF → B where F is a finite subset of G and

Φ(x)(g) = φ(Sgx↾F) for all x ∈ X and g ∈ G.
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Some new (!?!) results on subshifts:

Let d be a positive integer, let A be a finite
set of symbols, and let X be a nonempty
subset of AG where G is Nd or Zd.

The Hausdorff dimension, dim(X), and the
effective Hausdorff dimension, effdim(X), are
defined as usual with respect to the standard
metric ρ(x, y) = 2−|Fn| where n is as large as
possible such that x↾Fn = y↾Fn.

Here Fn is {1, . . . , n}d if G = Nd,

or {−n, . . . , n}d if G = Z
d.

We first state some old results.

1. effdim(X) = sup
x∈X

effdim(x).

2. effdim(x) = lim inf
n→∞

K(x↾Fn)

|Fn|
.

3. effdim(X) = dim(X)

provided X is effectively closed, i.e., Π0
1.

Here K denotes Kolmogorov complexity.
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Theorem 1 (Simpson 2010). Assume that

X is a subshift, i.e., X is closed and

shift-invariant. Then

effdim(X) = dim(X) = ent(X).

Moreover

dim(X) ≥ lim sup
n→∞

K(x↾Fn)

|Fn|
for all x ∈ X,

and

dim(X) = lim
n→∞

K(x↾Fn)

|Fn|
for many x ∈ X.

Remark. Here ent(X) denotes entropy,

ent(X) = lim
n→∞

log2 |{x↾Fn | x ∈ X}|
|Fn|

.

This is known to be a conjugacy invariant.

Note. In the above theorem, there is no

finiteness or computability hypothesis on the

subshift X. Moreover, X can be a G-subshift

where G is Nd or Zd for any positive integer d.
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Remark. The proof of Theorem 1 involves

ergodic theory (Shannon/McMillan/Breiman,

the Variational Principle, etc.) plus a

combinatorial argument which is similar to

the proof of the Vitali Covering Lemma.

Remark. Theorem 1 seems so fundamental

that it could have been noticed long ago.

Nevertheless, I have not been able to find it

in the literature. So far as I can tell,

everything in the theorem is new, except

the following result of Furstenberg 1967:

dim(X) = ent(X) provided G = N.

The proof of this special case is much easier.

Remark. Theorem 1 is an outcome of

my discussions at Penn State during

February–April 2010 with many people

including John Clemens, Mike Hochman,

Dan Mauldin, Jan Reimann, and Sasha Shen.
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Some new results on partial randomness.

Background:

Let h : {0,1}∗ → [0,∞) be computable.

Say that x ∈ {0,1}N is strongly h-random if

∃c∀n (KA(x↾{1, . . . , n}) > h(x↾{1, . . . , n})− c).

Here KA = a priori Kolmogorov complexity,

i.e., KA(σ) = − log2m(σ)

where m is a universal left r.e. semimeasure.

Note that KA is similar but not identical to

KP = prefix-free Kolmogorov complexity.

Strong h-randomness has been studied by

Calude/Staiger/Terwijn, APAL, 2006, and

Reimann/Stephan, Proceedings of the 9th

Asian Logic Conference, 2006.

When h(σ) = s|σ| this is closely related to

effective Hausdorff dimension as pioneered

in Reimann’s Ph.D. thesis, 2004.
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New results:

Theorem 2 (Simpson 2011). Assume that

x is strongly h-random and x ≤T y
where y is Martin-Löf random relative to z.
Then x is strongly h-random relative to z.

Remark. The special case h(σ) = |σ|,
i.e., when x is Martin-Löf random, is due to

Joseph S. Miller and Liang Yu, TAMS, 2008.

Theorem 3 (Simpson 2011).

Let I be a countable index set. Assume that

(∀i ∈ I) (xi is strongly hi-random).

Then, we can find a PA-oracle z such that

(∀i ∈ I) (xi is strongly hi-random rel. to z).

Remark. The special case when h(σ) = |σ|
and |I| = 1 is due to Rodney G. Downey and

Denis Hirschfeldt and Joseph S. Miller and

André Nies, JML, 2005.

Remark. I do not know whether Theorems

2 and 3 hold with KA replaced by KP.
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Degrees of unsolvability (Muchnik).

Let X be any set of reals. We view X as

a mass problem, viz., the problem of

“finding” some x ∈ X.

In order to interpret “finding,” we use

Turing’s concept of computability.

Accordingly, we say that X is

algorithmically solvable

if X contains some computable real,

or in other words, X ∩REC 6= ∅.

Similarly, we say that X is algorithmically

reducible to Y if each y ∈ Y can be used

as a Turing oracle to compute some x ∈ X.

The degree of unsolvability of X, deg(X),

is the equivalence class of X under

mutual algorithmic reducibility.

Reference:

Albert A. Muchnik, On strong and weak reducibilities
of algorithmic problems, Sibirskii Matematicheskii
Zhurnal, 4, 1963, 1328–1341, in Russian.
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I have been applying recursion-theoretic

concepts such as Muchnik degrees and

Kolmogorov complexity to obtain

new results in symbolic dynamics.

Muchnik degrees of subshifts.

A subshift X is of finite type if it is given by

a finite set of excluded finite configurations:

X = {x ∈ AG | (∀g ∈ G) (Sgx↾F /∈ E)}
where E and F are finite.

Recall that Ew is the lattice of

Muchnik degrees of nonempty Π0
1 classes,

in Cantor space (or in Euclidean space).

Recall also that Ew includes many specific,

natural degrees which are associated with

foundationally interesting topics.

A picture of Ew is on slides 12, 14, . . . , 22.

Theorem 4 (Simpson 2007). The Muchnik

degrees in Ew are precisely the Muchnik

degrees of Z2-subshifts of finite type.
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Proof. One direction is trivial, because

subshifts of finite type may be viewed as

Π0
1 classes. My proof of the other direction

uses tiling techniques which go back to

Berger 1966, Robinson 1971, Myers 1974.

Another proof, due to

Durand/Romashchenko/Shen 2008,

uses “self-replicating tile sets.”

Corollary (Simpson 2007). We can construct

an infinite family of Z2-subshifts of finite type

which are strongly independent with respect

to shift morphisms, etc.

Proof. This follows from the existence of an

infinite independent set of degrees in Ew. The

existence of such degrees is proved by means

of a priority argument.

Thus we have an application of recursion

theory (tiling methods plus priority argument)

to prove a result in symbolic dynamics which

does not mention computability concepts.
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A possibly interesting research program:

Given a subshift X, explore the relationship

between the dynamical properties of X

and the degree of unsolvability of X,

i.e., its Muchnik degree, deg(X).

For example, the entropy of X is a

well-known dynamical property which serves

as an upper bound on the complexity of

orbits. In particular ent(X) > 0 implies

(∃x ∈ X) (x is not computable).

By contrast, the degree of unsolvability of X

serves as a lower bound on the complexity of

orbits. For instance, deg(X) > 0 ⇐⇒
(∀x ∈ X) (x is not computable).

Theorem (Hochman). If X is of finite type

and minimal (i.e., every orbit is dense), then

deg(X) = 0.

More generally, the theorem holds for all

Π0
1 subshifts, not necessarily of finite type.
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A picture of Ew. Each black dot except

inf(a, 1) represents a specific, natural degree

in Ew. We shall explain some of these degrees.
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Two subshifts are said to be conjugate if

they are topologically isomorphic, i.e.,

there is a shift isomorphism between them.

The basic problem of symbolic dynamics is:

classify subshifts up to conjugacy invariance.

Muchnik degrees can help, because the

Muchnik degree of a subshift is a conjugacy

invariant. In particular, each degree in Ew
including 0, 1, r1, d, dREC, dC, ks, kg,

inf(r2, 1), inf(bα, 1), and even inf(a, 1)

may be viewed as a conjugacy invariant

for subshifts of finite type.

It is interesting to compare the Muchnik

degree of a subshift X with other conjugacy

invariants, e.g., the entropy of X.

Generally speaking, the Muchnik degree of X

represents a lower bound on the complexity of

the orbits, while the entropy of X is an upper

bound on the complexity of these same orbits.
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We now explain some degrees in Ew.

The top degree in Ew is 1 = deg(CPA) where

CPA is the problem of finding

a complete consistent theory which

includes Peano arithmetic (or ZFC, etc.).

We also have inf(a, 1) ∈ Ew where a is

any recursively enumerable Turing degree.

Moreover, a < b implies inf(a, 1) < inf(b, 1)

We have r1 ∈ Ew where r1 = deg(MLR),

MLR = {x ∈ 2N | x is Martin-Löf random}).

We also have inf(r2, 1) ∈ Ew where

r2 = deg({x ∈ 2N | x is 2-random}),
i.e., random relative to the halting problem.

Also d ∈ Ew where d =

deg({f | f is diagonally nonrecursive}),
i.e., ∀n (f(n) 6= ϕn(n)).
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Let REC = {g ∈ N
N | g is recursive}.

Let C be any “nice” subclass of REC.

For instance C = REC, or C = {g ∈ REC |
g is primitive recursive}. We have dC ∈ Ew
where dC = deg({f ∈ NN | f is diagonally

nonrecursive and C-bounded}),
i.e., (∃g ∈ C)∀n (f(n) < g(n)).

Also, dC = deg({x ∈ 2N | x is C-complex}, i.e.,
(∃g ∈ C) ∀n (K(x↾{1, . . . , g(n)}) ≥ n)}).
Moreover, dC′ < dC whenever C′ contains a

function which dominates all functions in C.

For x ∈ 2N let effdim(x) = the

effective Hausdorff dimension of x, i.e.,

effdim(x) = lim inf
n→∞

K(x↾{1, . . . , n})
n

.

Given a right recursively enumerable real

number s < 1, we have ks ∈ Ew where

ks = deg({x ∈ 2N | effdim(x) > s}).

Moreover, s < t implies ks < kt (Miller).
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More generally, let g : N → [−∞,∞) be an

unbounded computable function such that

g(n) ≤ g(n+1) ≤ g(n) + 1 for all n.

For example, g(n) could be n/2 or n/3

or
√
n or 3

√
n or logn or logn+ log logn or

log logn or the inverse Ackermann function.

Define kg = deg({x ∈ 2N | x is g-random}),
i.e., ∃c∀n (KP(x↾{1, . . . , n} ≥ g(n)− c).

Theorem 5 (Hudelson 2010). kg < kh
provided g(n) + 2 log g(n) ≤ h(n) for all n.

In other words, there exists a g-random real

with no h-random real Turing reducible to it.

This is a generalization of Miller’s theorem

on the difficulty of information extraction.

References:

Phil Hudelson, Mass problems and initial segment
complexity, in preparation.

Joseph S. Miller, Extracting information is hard,
Advances in Mathematics, 226, 2011, 373–384.
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Letting z be a Turing oracle, define

MLRz = {x ∈ 2N | x is random relative to z}
and Kz(τ) = the prefix-free Kolmogorov

complexity of τ relative to z.

Define y ≤LR z ⇐⇒ MLRz ⊆ MLRy

and y ≤LK z ⇐⇒ ∃c∀τ (Kz(τ) ≤ Ky(τ) + c).

Theorem (Miller/Kjos-Hanssen/Solomon).

We have y ≤LR z ⇐⇒ y ≤LK z.

For each recursive ordinal number α, let
0(α) = the αth iterated Turing jump of 0.
Thus 0(1) = the halting problem, and
0(α+1) = the halting problem relative to 0(α),
etc. This is the hyperarithmetical hierarchy.
We embed it naturally into Ew as follows.

Theorem 6 (Simpson 2009). 0(α) ≤LR z

⇐⇒ every Σ0
α+2 set includes a Σ

0,z
2 set

of the same measure. Moreover,

letting bα = deg({z | 0(α) ≤LR z}) we have

inf(bα, 1) ∈ Ew and inf(bα, 1) < inf(bα+1, 1).
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History: Kolmogorov 1932 developed his
“calculus of problems” as a nonrigorous

yet compelling explanation of Brouwer’s

intuitionism. Later Medvedev 1955 and

Muchnik 1963 proposed Medvedev degrees
and Muchnik degrees as rigorous versions

of Kolmogorov’s idea.

Some references:

Stephen G. Simpson, Mass problems and randomness,
Bulletin of Symbolic Logic, 11, 2005, 1–27.

Stephen G. Simpson, An extension of the recursively
enumerable Turing degrees, Journal of the London
Mathematical Society, 75, 2007, 287–297.

Stephen G. Simpson, Mass problems and intuitionism,
Notre Dame Journal of Formal Logic, 49, 2008,
127–136.

Stephen G. Simpson, Mass problems and
measure-theoretic regularity, Bulletin of Symbolic
Logic, 15, 2009, 385–409.

Stephen G. Simpson, Medvedev degrees of
2-dimensional subshifts of finite type, to appear in
Ergodic Theory and Dynamical Systems.

Stephen G. Simpson, Entropy equals dimension equals
complexity, 2010, in preparation.

THE END. THANK YOU!
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