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Symbolic dynamics.

Let G be (N¢ +) or (Z%, +) where d > 1.
Let A be a finite set of symbols.

We endow A with the discrete topology
and AC with the product topology.

The shift action of G on A is given by
(S9z)(h) = z(g+ k) for g,h € G and z € AC.

A subshift is a nonempty set X C AG which is
topologically closed and shift-invariant,
i.e., x € X implies S9¢x € X for all g € G.

Symbolic dynamics is the study of subshifts.

If X C AC and Y C B¢ are subshifts,
a shift morphism from X to Y is
a continuous mapping ¢ : X — Y such that

d(S9z) = S9P(x) for all x € X and g € G.

By compactness, any shift morphism & is
given by a block code, i.e., a finite mapping
¢ A — B where F is a finite subset of G and
d(x)(g) = ¢(S9x[F) for all x € X and g € G.
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Some new (!?!) results on subshifts:

Let d be a positive integer, let A be a finite
set of symbols, and let X be a nonempty
subset of AG where G is N¢ or 74,

The Hausdorff dimension, dim(X), and the
effective Hausdorff dimension, effdim(X), are
defined as usual with respect to the standard
metric p(x,y) = 27l where n is as large as
possible such that x[Fy = y[Fhy.

Here Fy, is {1,...,n}? if G = N¢,
or {—n,...,n}?if G =77
We first state some old results.

1. effdim(X) = sup effdim(x).

reX
K(z|F
>, effdim(z) = lim inf ~EFR).

3. effdim(X) = dim(X)
provided X is effectively closed, i.e., MY.

Here K denotes Kolmogorov complexity.



Theorem 1 (Simpson 2010). Assume that
X is a subshift, i.e., X is closed and
shift-invariant. Then

effdim(X) = dim(X) = ent(X).

Moreover
K(xz[F.
dim(X) > limsup (@] Fn) for all z € X,
and
K(x[F
dim(X) = lim (z]Fn) for many z € X.
n—oo

Remark. Here ent(X) denotes entropy,

ent(X) = fim '0921{zFn |z € X}

This is known to be a conjugacy invariant.

Note. In the above theorem, there is no
finiteness or computability hypothesis on the
subshift X. Moreover, X can be a G-subshift
where G is N% or Z4 for any positive integer d.
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Remark. The proof of Theorem 1 involves
ergodic theory (Shannon/McMillan/Breiman,
the Variational Principle, etc.) plus a
combinatorial argument which is similar to
the proof of the Vitali Covering Lemma.

Remark. Theorem 1 seems so fundamental
that it could have been noticed long ago.
Nevertheless, I have not been able to find it
in the literature. So far as I can tell,
everything in the theorem is new, except
the following result of Furstenberg 1967:

dim(X) = ent(X) provided G = N.

The proof of this special case is much easier.

Remark. Theorem 1 is an outcome of

my discussions at Penn State during
February—April 2010 with many people
including John Clemens, Mike Hochman,
Dan Mauldin, Jan Reimann, and Sasha Shen.
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Some new results on partial randomness.
Background:.

Let h:{0,1}* — [0,00) be computable.

Say that = € {0, 1} is strongly h-random if
JeVn (KA(x[{1,...,n}) > h(x{1,...,n}) —c).
Here KA = a priori Kolmogorov complexity,
i.e., KA(c) = —logsm(o)

where m is a universal left r.e. semimeasure.

Note that KA is similar but not identical to
KP = prefix-free Kolmogorov complexity.

Strong h-randomness has been studied by
Calude/Staiger/Terwijn, APAL, 2006, and
Reimann/Stephan, Proceedings of the 9th
Asian Logic Conference, 2006.

When h(o) = s|o| this is closely related to
effective Hausdorff dimension as pioneered
in Reimann’s Ph.D. thesis, 2004.



New results:

Theorem 2 (Simpson 2011). Assume that
x IS strongly h-random and x <7 y

where y is Martin-Lof random relative to z.
Then x is strongly h-random relative to z.

Remark. The special case h(o) = |o|,
i.e., when z is Martin-Lof random, is due to
Joseph S. Miller and Liang Yu, TAMS, 2008.

Theorem 3 (Simpson 2011).
Let I be a countable index set. Assume that

(Vi € I) (x; is strongly h;-random).
Then, we can find a PA-oracle z such that
(Vi € I) (x; is strongly h;-random rel. to z).

Remark. The special case when h(o) = |o|
and |I| =1 is due to Rodney G. Downey and
Denis Hirschfeldt and Joseph S. Miller and
André Nies, JML, 2005.

Remark. I do not know whether Theorems
2 and 3 hold with KA replaced by KP.



Degrees of unsolvability (Muchnik).

Let X be any set of reals. We view X as
a mass problem, viz., the problem of
“finding” some = € X.

In order to interpret “finding,” we use
Turing's concept of computability.

Accordingly, we say that X is
algorithmically solvable

if X contains some computable real,
or in other words, X N REC # 0.

Similarly, we say that X is algorithmically
reducible to Y if each y € Y can be used
as a Turing oracle to compute some x € X.

The degree of unsolvability of X, deg(X),
is the equivalence class of X under
mutual algorithmic reducibility.

Reference:

Albert A. Muchnik, On strong and weak reducibilities
of algorithmic problems, Sibirskii Matematicheskii
Zhurnal, 4, 1963, 1328—1341, in Russian.
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I have been applying recursion-theoretic
concepts such as Muchnik degrees and
Kolmogorov complexity to obtain

new results in symbolic dynamics.

Muchnik degrees of subshifts.

A subshift X is of finite type if it is given by

a finite set of excluded finite configurations:
X ={zxec A9 | (Vg € G) (S9z|F ¢ E)}

where E and F' are finite.

Recall that &w is the lattice of

Muchnik degrees of nonempty I‘I(l) classes,
in Cantor space (or in Euclidean space).

Recall also that £&w includes many specific,
natural degrees which are associated with
foundationally interesting topics.

A picture of &w is on slides 12, 14, ...,6 22.

Theorem 4 (Simpson 2007). The Muchnik
degrees in &y are precisely the Muchnik

degrees of Z2-subshifts of finite type.



Proof. One direction is trivial, because
subshifts of finite type may be viewed as
I‘I(l) classes. My proof of the other direction
uses tiling techniques which go back to
Berger 1966, Robinson 1971, Myers 1974.
Another proof, due to
Durand/Romashchenko/Shen 2008,

uses ‘‘self-replicating tile sets.”

Corollary (Simpson 2007). We can construct
an infinite family of Z2-subshifts of finite type
which are strongly independent with respect
to shift morphisms, etc.

Proof. This follows from the existence of an
infinite independent set of degrees in &w. The
existence of such degrees is proved by means
of a priority argument.

Thus we have an application of recursion
theory (tiling methods plus priority argument)
to prove a result in symbolic dynamics which
does not mention computability concepts.
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A possibly interesting research program:

Given a subshift X, explore the relationship
between the dynamical properties of X

and the degree of unsolvability of X,
i.e., its Muchnik degree, deg(X).

For example, the entropy of X is a
well-known dynamical property which serves
as an upper bound on the complexity of
orbits. In particular ent(X) > 0 implies

(dx € X) (z is not computable).

By contrast, the degree of unsolvability of X
serves as a lower bound on the complexity of
orbits. For instance, deg(X) > 0 <—

(Vx € X) (z is not computable).

Theorem (Hochman). If X is of finite type
and minimal (i.e., every orbit is dense), then
deg(X) = 0.

More generally, the theorem holds for all
N9 subshifts, not necessarily of finite type.
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1= degW(CPA)

Inf(r
"1 einf(a,1)
kS
K y+10)
k .=d

A picture of &w. Each black dot except

inf(a, 1) represents a specific, natural degree

in Ew. We shall explain some of these degrees.
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Two subshifts are said to be conjugate if
they are topologically isomorphic, i.e.,
there is a shift isomorphism between them.

The basic problem of symbolic dynamics is:
classify subshifts up to conjugacy invariance.

Muchnik degrees can help, because the
Muchnik degree of a subshift is a conjugacy
invariant. In particular, each degree in &w
including 0, 1, r1, d, drec, d¢o, ks, kg,
inf(ro,1), inf(bg,1), and even inf(a, 1)

may be viewed as a conjugacy invariant

for subshifts of finite type.

It is interesting to compare the Muchnik
degree of a subshift X with other conjugacy
invariants, e.g., the entropy of X.

Generally speaking, the Muchnik degree of X
represents a lower bound on the complexity of
the orbits, while the entropy of X is an upper
bound on the complexity of these same orbits.

13



1= degW(CPA)

Inf(r
"1 einf(a,1)
kS
g R
k.=d

A picture of &w. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, k =

complexity, d = diagonal nonrecursiveness.
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We now explain some degrees in Ew.

The top degree in &w is 1 = deg(CPA) where
CPA is the problem of finding

a complete consistent theory which

includes Peano arithmetic (or ZFC, etc.).

We also have inf(a,1) € Ew where a is
any recursively enumerable Turing degree.
Moreover, a < b implies inf(a,1) < inf(b, 1)

We have r1 € £éw where r1 = deg(MLR),
MLR = {z € 2" | z is Martin-L&f random}).

We also have inf(ro,1) € éw where
ro = deg({z € 2V | z is 2-random}),
i.e., random relative to the halting problem.

Also d € &w where d =
deg({f | f is diagonally nonrecursive}),

i.e., Vn (f(n) # ¢n(n)).
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1= degW(CPA)

Inf(r
"1 einf(a,1)
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g R
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A picture of &w. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, k =

complexity, d = diagonal nonrecursiveness.
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Let REC = {g € NN | g is recursive}.

Let C' be any “nice” subclass of REC.
For instance C = REC, or C = {g € REC |
g is primitive recursive}. We have dg € &w
where d = deg({f € NV | f is diagonally
nonrecursive and C-bounded}),

i.e., (3ge O)Vn(f(n) < g(n)).

Also, do = deg({z € 2V | z is C-complex}, i.e.,

(39 € O)vn(K(z[{1,...,9(n)}) = n)}).
Moreover, d- < do whenever C’ contains a
function which dominates all functions in C.

For z € 2N let effdim(z) = the
effective Hausdorff dimension of x, i.e.,

K(x{1,... ,n})

effdim(xz) = liminf
n—oo n

Given a right recursively enumerable real
number s < 1, we have ks € &w Where

ks = deg({z € 21 | effdim(z) > s}).

Moreover, s < t implies kg < k; (Miller).
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A picture of &w. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, k =

complexity, d = diagonal nonrecursiveness.
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More generally, let g : N — [—00,00) be an
unbounded computable function such that

g(n) <g(n+1) <g(n)+ 1 for all n.

For example, g(n) could be n/2 or n/3
or /n or Jn or logn or logn + loglogn or
loglogn or the inverse Ackermann function.

Define k; = deg({z € 2V | z is g-random}),
i.e., deVn (KP(x[{1,...,n} > g(n) — c).

Theorem 5 (Hudelson 2010). kg < kp,
provided g(n) 4+ 21og g(n) < h(n) for all n.

In other words, there exists a g-random real
with no h-random real Turing reducible to it.

This is a generalization of Miller’'s theorem
on the difficulty of information extraction.

References:

Phil Hudelson, Mass problems and initial segment
complexity, in preparation.

Joseph S. Miller, Extracting information is hard,
Advances in Mathematics, 226, 2011, 373—384.
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A picture of &w. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, k =

complexity, d = diagonal nonrecursiveness.
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Letting z be a Turing oracle, define
MLR? = {z € 2N | 2 is random relative to z}

and K?(1r) = the prefix-free Kolmogorov
complexity of 7 relative to z.

Define y <R ?Z &= MLR?* C MLRY
and y <| k z <= V7 (K?(7) < KY(1) 4 ©).

Theorem (Miller/Kjos-Hanssen/Solomon).
We have y <|r 2z <=y <| Kk 2.

For each recursive ordinal number «, let

0(®) = the ath iterated Turing jump of O.
Thus 0(1) = the halting problem, and

o(at1) — the halting problem relative to 0(®)
etc. This is the hyperarithmetical hierarchy.
We embed it naturally into &y as follows.

Theorem 6 (Simpson 2009). 0(®) <, 2
<~ every Zg_|_2 set includes a Zg’z set

of the same measure. Moreover,

letting by = deg({z | 0(d) < z}) we have
inf(ba,1) € Ew and inf(bq,1) < inf(by41,1).
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A picture of &w. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, k =

complexity, d = diagonal nonrecursiveness.
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History: Kolmogorov 1932 developed his
“calculus of problems’” as a nonrigorous
yet compelling explanation of Brouwer’s
intuitionism. Later Medvedev 1955 and
Muchnik 1963 proposed Medvedev degrees
and Muchnik degrees as rigorous versions
of Kolmogorov’s idea.

Some references:

Stephen G. Simpson, Mass problems and randomness,
Bulletin of Symbolic Logic, 11, 2005, 1-27.

Stephen G. Simpson, An extension of the recursively
enumerable Turing degrees, Journal of the London
Mathematical Society, 75, 2007, 287—297.

Stephen G. Simpson, Mass problems and intuitionism,
Notre Dame Journal of Formal Logic, 49, 2008,
127—-136.

Stephen G. Simpson, Mass problems and
measure-theoretic regularity, Bulletin of Symbolic
Logic, 15, 2009, 385—4009.

Stephen G. Simpson, Medvedev degrees of
2-dimensional subshifts of finite type, to appear in
Ergodic Theory and Dynamical Systems.

Stephen G. Simpson, Entropy equals dimension equals
complexity, 2010, in preparation.

THE END. THANK YOU!
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