Reverse Mathematics and Π_2^1 Comprehension

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University
http://www.math.psu.edu/simpson/

June 16, 2005

Note: This is an abstract of an invited one-hour talk, to be given in a Recursion Theory workshop, part of the program *Computational Prospects of Infinity*, June 20 to August 15, 2005, at the Institute for Mathematical Sciences, National University of Singapore.

Abstract

This is joint work with Carl Mummert. We initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π_2^1 comprehension. An MF space is defined to be a topological space of the form $\mathrm{MF}(P)$ with topology generated by $\{N_p \mid p \in P\}$. Here P is a poset, $\mathrm{MF}(P)$ is the set of maximal filters on P, and $N_p = \{F \in \mathrm{MF}(P) \mid p \in F\}$. If the poset P is countable, the space $\mathrm{MF}(P)$ is said to be countably based. The class of countably based MF spaces can be defined and discussed within the subsystem ACA_0 of second order arithmetic. One can prove within ACA_0 that every complete separable metric space is homeomorphic to a countably based MF space which is regular. We show that the converse statement, "every countably based MF space which is regular is homeomorphic to a complete separable metric space," is equivalent to Π_2^1 - CA_0 . The equivalence is proved in the weaker system Π_1^1 - CA_0 . This is the first example of a theorem of core mathematics which is provable in second order arithmetic and implies Π_2^1 comprehension.