Weak Degrees of Π_1^0 Subsets of 2^{ω}

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University
http://www.math.psu.edu/simpson/

June 16, 2005

Note: This is an abstract of an invited one-hour talk, to be given in a Recursion Theory workshop, part of the program *Computational Prospects of Infinity*, June 20 to August 15, 2005, at the Institute for Mathematical Sciences, National University of Singapore.

Abstract

Let $P,Q \subseteq 2^{\omega}$ be viewed as mass problems, i.e., "decision problems with more than one solution." We say that the mass problem P is weakly reducible to the mass problem Q if, for every solution Y of Q, there exists a solution X of P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. (Weak degrees are also known as Muchnik degrees.) Let \mathcal{P}_w be the set of weak degrees of nonempty Π_1^0 subsets of 2^{ω} , partially ordered by weak reducibility. It is easy to see that \mathcal{P}_w is a countable distributive lattice. The speaker and others have studied \mathcal{P}_w in a series of publications beginning in 1999. Our principal findings are as follows.

- 1. There is a natural embedding of \mathcal{R}_T , the countable semilattice of recursively enumerable Turing degrees, into \mathcal{P}_w . This embedding is one-to-one and preserves the partial ordering \leq , the semilattice operation \vee , and the top and bottom elements $\mathbf{0}$ and $\mathbf{0}'$. We identify \mathcal{R}_T with its image in \mathcal{P}_w under this embedding.
- 2. Like the semilattice \mathcal{R}_T , the lattice \mathcal{P}_w is structurally rich. In particular, any countable distributive lattice is lattice embeddable in any nontrivial initial segment of \mathcal{P}_w . Also, the \mathcal{P}_w analog of the Sacks Splitting Theorem holds. These structural results are proved by means of priority arguments. The \mathcal{P}_w analog of the Sacks Density Theorem remains as an open problem.
- 3. Unlike \mathcal{R}_T , the lattice \mathcal{P}_w contains a large number of specific, natural degrees other than the top and bottom elements. These specific, natural degrees in \mathcal{P}_w are related to foundationally interesting topics such as reverse mathematics, algorithmic randomness, subrecursive hierarchies from Gentzen-style proof theory, and computational complexity.
- 4. All of these specific, natural degrees in \mathcal{P}_w are incomparable with all of the recursively enumerable Turing degrees in \mathcal{R}_T . The only exceptions are $\mathbf{0}$ and $\mathbf{0}'$, the top and bottom elements of \mathcal{R}_T , which are the same as the top and bottom elements of \mathcal{P}_w .