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Motivation:

Recall that ET is the upper semilattice of

recursively enumerable Turing degrees.

Two basic, classical, unresolved issues

concerning ET are:

Issue 1: To find a specific, natural, r.e.

Turing degree a ∈ ET which is > 0 and < 0′.

Issue 2: To find a “smallness property” of an

infinite co-r.e. set A ⊆ ω which insures that

degT(A) = a ∈ ET is > 0 and < 0′.

These unresolved issues go back to Post’s

1944 paper, Recursively enumerable sets of

positive integers and their decision problems.

Mass Problems to the Rescue!

We address Issues 1 and 2 by passing from

decision problems to mass problems.
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Outline of this talk:

We embed ET into a slightly larger structure,

Pw, which is much better behaved. In the Pw

context, we obtain satisfactory, positive

answers to Issues 1 and 2.

What is this wonderful structure Pw?

Briefly, Pw is the lattice of weak degrees of

mass problems associated with nonempty Π0
1

subsets of 2ω.

In order to explain Pw, we must first explain:

• mass problems,

• weak degrees, and

• nonempty Π0
1 subsets of 2ω.
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Mass problems (informal discussion):

A “decision problem” is the problem of

deciding whether a given n ∈ ω belongs to a

fixed set A ⊆ ω or not. To compare decision

problems, we use Turing reducibility. A ≤T B

means that A can be computed using an

oracle for B.

A “mass problem” is a problem with a not

necessarily unique solution. (By contrast, a

“decision problem” has only one solution.)

The “mass problem” associated with a set

P ⊆ ωω is the “problem” of computing an

element of P .

The “solutions” of P are the elements of P .

One mass problem is said to be “reducible”

to another if, given any solution of the

second problem, we can use it as an oracle to

compute a solution of the first problem.
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Rigorous definition:

Let P and Q be subsets of ωω.

We view P and Q as mass problems.

We say that P is weakly reducible to Q if

(∀Y ∈ Q) (∃X ∈ P) (X ≤T Y ) .

This is abbreviated P ≤w Q.

Summary:

P ≤w Q means that, given any solution of Q,

we can use it as an oracle to compute a

solution of P .
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Digression: weak vs. strong reducibility

Let P and Q be subsets of ωω.

1. P is weakly reducible to Q, P ≤w Q, if

for all Y ∈ Q there exists e such that {e}Y ∈ P .

2. P is strongly reducible to Q, P ≤s Q, if

there exists e such that {e}Y ∈ P for all Y ∈ Q.

Strong reducibility is a uniform variant of

weak reducibility. By a result of Nerode, there

is an analogy:

weak reducibility

Turing reducibility
=

strong reducibility

truth table reducibility
.

In this talk we deal only with weak

reducibility.

Historical note:

Weak reducibility is due to Muchnik 1963.

Strong reducibility is due to Medvedev 1955.
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The lattice Pw:

We focus on Π0
1 subsets of 2ω, i.e.,

P = {paths through T} where T is a recursive

subtree of 2<ω, the full binary tree of finite

sequences of 0’s and 1’s.

We define Pw to be the set of weak degrees

of nonempty Π0
1 subsets of 2ω, ordered by

weak reducibility.

Basic facts about Pw:

1. Pw is a distributive lattice, with l.u.b.

given by P × Q = {X ⊕ Y | X ∈ P, Y ∈ Q}, and

g.l.b. given by P ∪ Q.

2. The bottom element of Pw is the weak

degree of 2ω.

3. The top element of Pw is the weak degree

of PA = {completions of Peano Arithmetic}.

(Scott/Tennenbaum).
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Weak reducibility of Π0
1 subsets of 2ω:

X Y

QP

P ≤w Q means:

(∀Y ∈ Q) (∃X ∈ P) (X ≤T Y ).

P, Q are given by infinite recursive subtrees of

the full binary tree of finite sequences of 0’s

and 1’s.

X, Y are infinite (nonrecursive) paths through

P, Q respectively.
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The lattice Pw (review):

A weak degree is an equivalence class of

subsets of ωω under the equivalence relation

P ≤w Q and Q ≤w P . The weak degrees have

a partial ordering induced by ≤w.

We define Pw to be the set of weak degrees

of nonempty Π0
1 subsets of 2ω, partially

ordered by weak reducibility.

Pw is a countable distributive lattice.

The bottom element of Pw is the weak

degree of 2ω.

The top element of Pw is the weak degree of

PA = {completions of Peano Arithmetic}.
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Embedding ET into Pw:

Theorem (Simpson 2002):

There is a natural embedding φ : ET → Pw.

(ET = the semilattice of Turing degrees of

r.e. subsets of ω. Pw = the lattice of weak

degrees of nonempty Π0
1 subsets of 2ω.)

The embedding φ is given by

φ : degT (A) 7→ degw(PA ∪ {A}).

Note that PA ∪ {A} is not a Π0
1 set. However,

it is of the same weak degree as a Π0
1 set.

This is already a nontrivial result.

The embedding φ is one-to-one and preserves

≤, l.u.b., and the top and bottom elements.

Convention:

We identify ET with its image in Pw under φ.

In particular, we identify 0′, 0 ∈ ET with the

top and bottom elements of Pw.
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A picture of the lattice Pw:

r. e.
Turing
degrees
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0
ET is embedded in Pw. 0′ and 0 are the top
and bottom elements of both ET and Pw.
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Structural properties of Pw:

1. Pw is a countable distributive lattice.

Every countable distributive lattice is lattice

embeddable in every initial segment of Pw.

(Binns/Simpson 2001)

2. The Pw analog of the Sacks Splittting

Theorem holds. (Stephen Binns, 2002)

3. We conjecture that the Pw analog of the

Sacks Density Theorem holds.

These structural results for Pw are proved by

means of priority arguments, just as for ET .

4. Within Pw the degrees r1 and inf(r2, 0′)

are meet irreducible and do not join to 0′.

(Simpson 2002, 2004)

5. 0 is meet irreducible. (This is trivial.)
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Response to Issue 1:

Issue 1 was:

To find a specific, natural example of a

recursively enumerable Turing degree which is

> 0 and < 0′.

We do not know how to do this.

However, in the Pw context, we have

discovered many specific, natural degrees

which are > 0 and < 0′.

The specific, natural degrees in Pw which we

have discovered are related to foundationally

interesting topics:

• algorithmic randomness,

• diagonal nonrecursiveness,

• reverse mathematics,

• subrecursive hierarchies,

• computational complexity.
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Note: Except for 0′ and 0, the r.e. Turing

degrees are incomparable with these specific,

natural degrees in Pw.
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Some specific, natural degrees in Pw:

rn = the weak degree of the set of n-random

reals.

d = the weak degree of the set of diagonally

nonrecursive functions.

dREC = the weak degree of the set of

diagonally nonrecursive functions which are

recursively bounded.

Theorem (Simpson 2002, Ambos · · · 2004):

In Pw we have

0 < d < dREC < r1 < inf(r2, 0′) < 0′.

Theorem (Simpson 2004):

1. r1 is the maximum weak degree of a Π0
1

subset of 2ω which is of positive measure.

2. inf(r2, 0′) is the maximum weak degree of

a Π0
1 subset of 2ω whose Turing upward

closure is of positive measure.
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Structural properties of Pw:

1. Pw is a countable distributive lattice.

Every countable distributive lattice is lattice

embeddable in every initial segment of Pw.

(Binns/Simpson 2001)

2. The Pw analog of the Sacks Splittting

Theorem holds. (Stephen Binns, 2002)

3. We conjecture that the Pw analog of the

Sacks Density Theorem holds.

These structural results for Pw are proved by

means of priority arguments, just as for ET .

4. Within Pw the degrees r1 and inf(r2, 0′)

are meet irreducible and do not join to 0′.

(Simpson 2002, 2004)

5. 0 is meet irreducible. (This is trivial.)
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Another source of specific degrees in Pw:

almost everywhere domination.

Definition (Dobrinen/Simpson 2004):

B is almost everywhere dominating if, for

almost all X ∈ 2ω, each function ≤T X is

dominated by some function ≤T B.

Here “almost all” refers to the fair coin

measure on 2ω.

Randomness and a. e. domination are closely

related to the reverse mathematics of

measure theory.
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Some additional, natural degrees in Pw:

Let b1 = degw(AED) where

AED = {B | B is a. e. dominating}.

Let b2 = degw(AED × R1) where

R1 = {A | A is 1-random}.

Let b3 = degw(AED ∩ R1).

Theorem (2006): In Pw we have:

• 0 < inf(b1, 0′) < inf(b2, 0′) < inf(b3, 0′) < 0′.

• inf(b1, 0′) < some r.e. degrees < 0′.

• inf(b2, 0′) | all r.e. degrees except 0, 0′.

• inf(b3, 0′) > some r.e. degrees > 0.

The proof uses virtually everything that is

known about randomness and almost

everywhere domination (Cholak, Greenberg,

Hirschfeldt, Kjos-Hanssen, Miller, Nies, . . . ).
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Note that inf(b1, 0′) and inf(b3, 0′), unlike

inf(b2, 0′), are comparable with some r.e.

Turing degrees other than 0′ and 0.
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Some additional, specific degrees in Pw:

dα = the weak degree of the set of diagonally

nonrecursive functions which are bounded by

a recursive function at level α of the Wainer

hierarchy. Here α is any ordinal ≤ ε0.

d2 = the weak degree of the set of f ⊕ g such

that f is diagonally nonrecursive, and g is

diagonally nonrecursive relative to f . More

generally, define dn for all n ≥ 1.

Theorem (Simpson 2004, Ambos · · · 2004):

In Pw we have

r1 > d0 > d1 > · · · > dα > · · · > dREC

and

d = d1 < d2 < · · · < dn < · · · < r1 .

We conjecture that dn is incomparable with

dα and with dREC. This would be the first

example of specific, natural degrees in Pw

which are incomparable with each other.
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The Embedding Lemma:

If S ⊆ ωω is Σ0
3 and if P ⊆ 2ω is nonempty Π0

1,

then degw(S ∪ P) ∈ Pw.

It follows that, for many Σ0
3 sets S ⊆ ωω,

degw(S) ∈ Pw.

Examples:

1. R1 = {X ∈ 2ω | X is 1-random}.

Since R1 is Σ0
2, it follows by the Embedding

Lemma that r1 = degw(R1) ∈ Pw.

2. R2 = {X ∈ 2ω | X is 2-random}.

Since R2 is Σ0
3, it follows by the Embedding

Lemma that inf(r2, 0′) = degw(R2 ∪ PA) ∈ Pw.

3. D = {f ∈ ωω | f is diagonally nonrecursive}.

Since D is Π0
1, d = degw(D) ∈ Pw.

4. DREC = {f ∈ D | f is recursively bounded}.

Since DREC is Σ0
3, dREC = degw(DREC) ∈ Pw.

5. Let A ⊆ ω be r.e. Since {A} is Π0
2,

degw({A} ∪ PA) ∈ Pw. This gives our

embedding of ET into Pw.
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The Embedding Lemma (restated):

Let S ⊆ ωω be Σ0
3. Let P ⊆ 2ω be nonempty

Π0
1. Then ∃ nonempty Π0

1 Q ⊆ 2ω such that
Q ≡w S ∪ P .

Proof (sketch). Step 1. By Skolem
functions, we may assume that S ⊆ ωω is Π0

1.

Step 2. We have S = {paths through TS},
P = {paths through TP}, where TS, TP are
recursive subtrees of ω<ω, 2<ω respectively.
May assume τ(n) ≥ 2 for all n < |τ |, τ ∈ TS.

Define Q = {paths through TQ}, where

TQ is the set of all ρ ∈ ω<ω of the form

ρ = σ0
a〈m0〉

aσ1
a〈m1〉

a · · ·a〈mk−1〉
aσk

where
• σ0, σ1, . . . , σk ∈ TP ,

• 〈m0, m1, . . . , mk−1〉 ∈ TS,

• ρ(n) ≤ max(n,2) for all n < |ρ|.

One can show that Q ≡w S ∪ P .

Step 3. Q is Π0
1 and recursively bounded.

Hence, we can find Π0
1 Q∗ ⊆ 2ω such that Q∗

is recursively homeomorphic to Q. Done.
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Response to Issue 2:

Issue 2 was:

To find a “smallness property” of an infinite

Π0
1 (i.e., co-r.e.) set A ⊆ ω which insures that

the Turing degree of A is > 0 and < 0′.

We do not know how to do this.

However, in the Pw context, we have

identified several “smallness properties” of a

Π0
1 set P ⊆ 2ω which insure that the weak

degree of P is > 0 and < 0′.

One result of this type:

Theorem (Simpson 2002):

Let p be the weak degree of a Π0
1 set P ⊆ 2ω

which is thin and perfect. Then p is

incomparable with r1. Hence 0 < p < 0′.
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Background on thin Π0
1 sets:

Definition:

A Π0
1 set P ⊆ 2ω is said to be thin if,

for all Π0
1 sets Q ⊆ P , P \ Q is Π0

1.

Thin perfect Π0
1 subsets of 2ω have been

constructed by means of priority arguments.

Much is known about them. For example,

any two such sets are automorphic in the

lattice of Π0
1 subsets of 2ω under inclusion.

(Martin/Pour-El 1970,

Downey/Jockusch/Stob 1990, 1996,

Cholak et al 2001)
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Some additional “smallness properties”:

Let P be a nonempty Π0
1 subset of 2ω.

1. P is small if there is no recursive function

f such that for all n there exist n members of

P which differ at level f(n) in the binary tree.

(Binns 2003)

Example: Let A ⊆ ω be hypersimple, and let

A = B1 ∪ B2 where B1, B2 are r.e. Then

P = {X ∈ 2ω | X separates B1, B2} is small.

Theorem (Binns):

If P is small, the weak degree of P is < 0′.

2. P is h-small if there is no recursive,

canonically indexed sequence of pairwise

disjoint clopen sets Dn, n ∈ ω, such that

P ∩ Dn 6= ∅ for all n. (Simpson 2003)

Theorem (Simpson):

If P is h-small, the weak degree of P is < 0′.
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Summary of this talk:

There are basic, unresolved issues concerning

ET , the semilattice of recursively enumerable

Turing degrees. One of the issues is the lack

of specific, natural, r.e. degrees.

We embed ET into Pw, the lattice of weak

degrees of nonempty Π0
1 subsets of 2ω. We

identify ET with its image in Pw.

In the Pw context, some of the unresolved

issues can be satisfactorily addressed.

In particular, Pw contains many specific,

natural degrees which are related to

foundationally interesting topics:

• algorithmic randomness,

• reverse mathematics,

• computational complexity.
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THE END
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