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Degrees of unsolvability.

Let N = {the natural numbers} = {0,1,2,...}.

Let Q={0, 1N ={z|2:N—{0,1}}
— the Cantor space.

Consider a Turing machine M with three
infinite tapes: the input tape, the output
tape, and the scratch tape. Assume that the
input tape is read-only, and the output tape
is write-once. We then use M to define a
functional ®,, :C Q2 — €2, as follows.

Given z,y € Q2 let M(z) = the run of M
starting with  on the input tape and blanks
on the output and scratch tapes. We define
dy/(x) =y if and only if M (x) writes y on the
output tape. Otherwise ®,,(x) is undefined.

Here x is used as an “oracle” which helps us
to compute y. We say that y is computable
relative to x. This idea came from Turing.

Note that ®,, is continuous on its domain.
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For sets P, C €2 we define:

P >sQ, i.e., Q is strongly reducible to P,
if and only if AMVz (x € P = o (x) € Q).
In other words, ®,;, | P: P — Q.

P>w Q,i.e., QQ is weakly reducible to P,
if and only if VxdM (z € P = ®(xz) € Q).

Motivation: The sets P, Q) C 2 are regarded
as ‘“problems.” The “solutions” of P are just
the elements of the set P. Such problems are
known as mass problems. The problem P is
said to be “solvable” if at least one of its
solutions is computable. Otherwise P is said
to be “unsolvable.” The problem (@ is said to
be “reducible” to the problem P if each
solution x of P can be used as an oracle to
compute some solution y of Q.

The distinction between >s and >w lies in
whether or not the Turing machine M which
computes y relative to z is required to be
independent of z.



History:

Kolmogorov 1932 developed his “calculus of
problems” as a nonrigorous yet compelling
explanation of Brouwer’s intuitionism. Later
Medvedev 1955 and Muchnik 1963 proposed
strong and weak reducibility as rigorous
explications of Kolmogorov's idea.
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More definitions:

P=sQ& (P <sQNQ <sP).

degs(P) ={Q | P =s Q}
— the strong degree of P.

degw(P) ={Q | P =w Q}
— the weak degree of P.

Ds = {degs(P) | P C €2}
Ds has a partial ordering < induced by <s.

Dw = {degw(P) | P C Q2}.
Dw has a partial ordering < induced by <.

Remark: Medvedev 1955 and Muchnik 1963
respectively noted that Ds and Dy are
complete Brouwerian lattices. Aspects of
these lattices have been studied by Dyment,
Skvortsova, Sorbi, Terwijn, and others.

Note: The cardinality of Ds and Dy is 22 °.
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Yet more definitions:

U C Q is effectively open if there exists a
comptable function s: N — {0,1}* such that

n=0

P C Q is effectively closed if Q\ P is
effectively open.

Es = {degs(P) |0 £ P C 2, P eff. closed}.
Ew = {degw(P) |0 # P C 2, P eff. closed}.

Remark: & and &y are countable sublattices
of Ds and Dy respectively. Much is known
about them. For instance, both & and &w
contain a bottom degree, denoted 0, and

a top degree, denoted 1. Obviously

0 = degs(2) = degw(£2). However, the
existence of 1 in & and &w IS not so obvious.
A well-known characterization of 1 will be
mentioned later.



A picture of &w. Each black dot except
inf(a, 1) represents a specific, natural degree
in Ew. AS time permits we shall explain some
of these degrees.
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Symbolic dynamics.

Let A be a finite set of symbols. Let Z =
the integers ={...,—-2,-1,0,1,2,...}.
We write A2 = {z |z :7Z — A}

This is the full shift space on A.

The shift operator S : AL — AZ is given
by S(x)(i)) = x(:+ 1) for all i € Z.

A subshift is a set X C AZ which is
closed, nonempty, and shift invariant,
i.e., Vz(z e X & S(x) € X).

If X and Y are subshifts, a shift morphism
from X to Y is a continuous mapping

f: X — Y such that f(S(z)) = S(f(x))

for all z € X.



@)
Given EC A* = | A" let Xp =

n=0
{z € A% | (Vi € Z)Vn (z(i+1),...,z(i+n)) ¢ E}.

Thus FE is a set of “excluded words.”
Clearly Xg is a subshift, provided it is #= (.
Moreover, all subshifts are of this form.

If E is finite, the subshift Xg
IS said to be of finite type.

If E is computable, the subshift Xg
is said to be of computable type.



Some easy remarks:

1. If f: X — Y is a shift morphism,
then X >sY and X >w Y.

In fact, f is a “block code.”

2. If f,f~1: X — Y are shift morphisms,
then X =Y and X =w Y.

In other words, the strong and weak degrees
of a subshift are *“conjugacy invariants.”

3. X is of computable type
if and only if X is effectively closed.

4. If X is of computable type,
then degg(X) € & and degy (X) € Ew.

Theorem (Joseph Miller). Conversely,
each degree in & or &w is, respectively,
the strong or weak degree of

a subshift of computable type.

The proof is ingenious but not difficult.
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We now generalize to d-dimensional subshifts.
Ford>1 we write Z*=7Zx --- x Z.

aVa

d
As before, let A be a finite set of symbols.
The full d-dimensional shift space over A is

ALY = {z |z :7Z%— A}. The shift operators
S, 0 AZY 5 AZ® for k= 1,...,d are given by
k(@) (i, rig) = 2(its- i + 1, ig).

A d-dimensional subshift is a set X C AZ°

which is closed, nonempty, and shift invariant,
l.e., (Vk)lSdeVCB (:1: cX & Sk(aﬁ) c X)

Each d-dimensional subshift is of the form
Xp = {z € A% | Yn (Viy,... ,ig€ 7)
(x(ir + J1s- -5 tq + Ja))1<jy,....jo<n & ED}

O
where E C | AL Thus E s

n=0

a set of “excluded d-dimensional words.”

If £ is finite, we say that Xg is of finite type.

If E is computable, we say that Xg is
of computable type.
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All of our earlier remarks about the
1-dimensional case extend easily to the
d-dimensional case.

Theorem (Simpson). Each degree in & or
Ew IS, respectively, the strong or weak degree
of a 2-dimensional subshift of finite type.

The proof uses techniques going back to
Berger 1965 and R. Robinson 1972.
Another proof can be obtained

by means of ‘self-replicating tile sets”
(Durand/Romashchenko/Shen).

Remark. There are many specific, interesting
degrees in &w. By the above theorems, each
such degree is realized by a 1-dimensional
subshift of computable type (Miller) and

by a 2-dimensional subshift of finite type
(Simpson).
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A possibly interesting research program:

Given a subshift X, explore the relationship
between X's dynamical properties

and X's degree of unsolvability,

i.e., degs(X) or degy (X).

For example, the entropy of X is a
well-known dynamical property which serves
as an upper bound on the complexity of
orbits. In particular h(X) > 0 implies

(dx € X) (x is not computable).

By contrast, the degree of unsolvability of X
serves as a lower bound on the complexity of
orbits. E.g., degs(X) > 0 < degy(X) >0 <
(Vx € X) (z is not computable).

Theorem (Hochman). If X is of computable
type and minimal (i.e., every orbit is dense),
then degq(X) = degy (X) = 0.

The proof is not difficult.

We finish by explaining some degrees in Ew.
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A picture of &w. Here a = any r.e. degree,
r = randomness, b = LR-reducibility, q =
dimension, d = diagonal nonrecursiveness.
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We now explain some degrees in Ew.

The top degree in &w is 1 = degy (CPA)
where CPA is the problem of finding

a complete, consistent theory which
includes first-order arithmetic.

We also have inf(a,1) € &w where a is
any recursively enumerable Turing degree.

We have d € &w where d = degy ({f € NN |
f is diagonally nonrecursive}),

l.e., Vn (f(n) # ¢n(n)).

Let REC = {g € NV | g is recursive}.
Let C' be any “nice” subclass of REC.
For instance C = REC, or C = {g € REC|
g is primitive recursive}. We have dg € Ew
where d = degw({f € NN | f is diagonally
nonrecursive and C-bounded}),
i.e.,, (g€ C)Vn(f(n) < gln)).
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Also, dg = degw({z € 2 | z is C-complex},

e, (Bg € O)Vn(K(z [ {1,...,9(n)}) > n)}).
Moreover, d~ < do whenever C’ contains a
function which dominates all functions in C.

For z € Q2 let dim(z) = the
effective Hausdorff dimension of x, i.e.,

dim(z) = liminf KGIT,-n))

n—aoo n

Given a right recursively enumerable real
number s, we have qs € Ew Where

qs = degw({z [ dim(z) > s}).

Moreover, s <t implies qs < q¢ (Miller).

We have ri € Eéw where r{ = degy({z € 2|
z is random in the sense of Martin-Lof}).

We also have inf(r>,1) € Ew where
ro = degw({z € 2| z is random relative to
the halting problem}).
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Using x as an oracle, define
RT = {z € Q| z is random relative to z}

and K¥(n) = the prefix-free Kolmogorov
complexity of n relative to «x.

Define s <|pry & RYCR?
and z <| ky < deVn (KY(n) < K¥(n) 4+ ¢).

Theorem (Miller/Kjos-Hanssen/Solomon).
We have z < ry if and only if x < k v.

For each recursive ordinal number «, let

0(®) = the ath iterated Turing jump of O.
Thus 0(1) = the halting problem, and

o(at1) — the halting problem relative to 0(®)
etc. This is the hyperarithmetical hierarchy.
We embed it naturally into &w as follows.

Theorem (Simpson). 0(®) < ry &

every Zg+2 set includes a Zg’y set

of the same measure. Moreover,

letting by = degyw ({y | o(a) <. r ¥}) we have
inf(bq,1) € Ew and inf(bg,1) < inf(by,41,1).
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THE END.

THANK YOU!
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