

DEGREES OF UNSOLVABILITY AND SYMBOLIC DYNAMICS

Stephen G. Simpson
Pennsylvania State University
<http://www.math.psu.edu/simpson/>
simpson@math.psu.edu

NSF-DMS-0600823, NSF-DMS-0652637,
Grove Endowment, Templeton Foundation

Dynamics and Computation
CIRM, Marseille, France
February 8–12, 2010

Degrees of unsolvability.

Let $\mathbb{N} = \{\text{the natural numbers}\} = \{0, 1, 2, \dots\}$.

Let $\Omega = \{0, 1\}^{\mathbb{N}} = \{x \mid x : \mathbb{N} \rightarrow \{0, 1\}\}$
= the Cantor space.

Consider a Turing machine M with three infinite tapes: the input tape, the output tape, and the scratch tape. Assume that the input tape is read-only, and the output tape is write-once. We then use M to define a functional $\Phi_M : \subseteq \Omega \rightarrow \Omega$, as follows.

Given $x, y \in \Omega$ let $M(x) =$ the run of M starting with x on the input tape and blanks on the output and scratch tapes. We define $\Phi_M(x) = y$ if and only if $M(x)$ writes y on the output tape. Otherwise $\Phi_M(x)$ is undefined.

Here x is used as an “oracle” which helps us to compute y . We say that y is *computable relative to x* . This idea came from Turing.

Note that Φ_M is continuous on its domain.

For sets $P, Q \subseteq \Omega$ we define:

$P \geq_s Q$, i.e., Q is *strongly reducible* to P ,
if and only if $\exists M \forall x (x \in P \Rightarrow \Phi_M(x) \in Q)$.
In other words, $\Phi_M \upharpoonright P : P \rightarrow Q$.

$P \geq_w Q$, i.e., Q is *weakly reducible* to P ,
if and only if $\forall x \exists M (x \in P \Rightarrow \Phi_M(x) \in Q)$.

Motivation: The sets $P, Q \subseteq \Omega$ are regarded as “problems.” The “solutions” of P are just the elements of the set P . Such problems are known as *mass problems*. The problem P is said to be “solvable” if at least one of its solutions is computable. Otherwise P is said to be “unsolvable.” The problem Q is said to be “reducible” to the problem P if each solution x of P can be used as an oracle to compute some solution y of Q .

The distinction between \geq_s and \geq_w lies in whether or not the Turing machine M which computes y relative to x is required to be independent of x .

History:

Kolmogorov 1932 developed his “calculus of problems” as a nonrigorous yet compelling explanation of Brouwer’s intuitionism. Later Medvedev 1955 and Muchnik 1963 proposed strong and weak reducibility as rigorous explications of Kolmogorov’s idea.

Some references:

Stephen G. Simpson, Mass problems and randomness, *Bulletin of Symbolic Logic*, 11, 2005, pages 1–27.

Stephen G. Simpson, Medvedev degrees of 2-dimensional subshifts of finite type, 8 pages, 1 May 2007; accepted 26 September 2007 for publication in *Ergodic Theory and Dynamical Systems*.

Stephen G. Simpson, Mass problems and intuitionism, *Notre Dame Journal of Formal Logic*, 49, 2008, pages 127–136.

Stephen G. Simpson, Mass problems and measure-theoretic regularity, *Bulletin of Symbolic Logic*, 15, 2009, pages 385–409.

More definitions:

$$P \equiv_s Q \Leftrightarrow (P \leq_s Q \wedge Q \leq_s P).$$

$$P \equiv_w Q \Leftrightarrow (P \leq_w Q \wedge Q \leq_w P).$$

$$\begin{aligned} \deg_s(P) &= \{Q \mid P \equiv_s Q\} \\ &= \text{the } \textit{strong} \text{ degree of } P. \end{aligned}$$

$$\begin{aligned} \deg_w(P) &= \{Q \mid P \equiv_w Q\} \\ &= \text{the } \textit{weak} \text{ degree of } P. \end{aligned}$$

$$\mathcal{D}_s = \{\deg_s(P) \mid P \subseteq \Omega\}.$$

\mathcal{D}_s has a partial ordering \leq induced by \leq_s .

$$\mathcal{D}_w = \{\deg_w(P) \mid P \subseteq \Omega\}.$$

\mathcal{D}_w has a partial ordering \leq induced by \leq_w .

Remark: Medvedev 1955 and Muchnik 1963 respectively noted that \mathcal{D}_s and \mathcal{D}_w are complete Brouwerian lattices. Aspects of these lattices have been studied by Dyment, Skvortsova, Sorbi, Terwijn, and others.

Note: The cardinality of \mathcal{D}_s and \mathcal{D}_w is $2^{2^{\aleph_0}}$.

Yet more definitions:

$U \subseteq \Omega$ is *effectively open* if there exists a computable function $s : \mathbb{N} \rightarrow \{0, 1\}^*$ such that

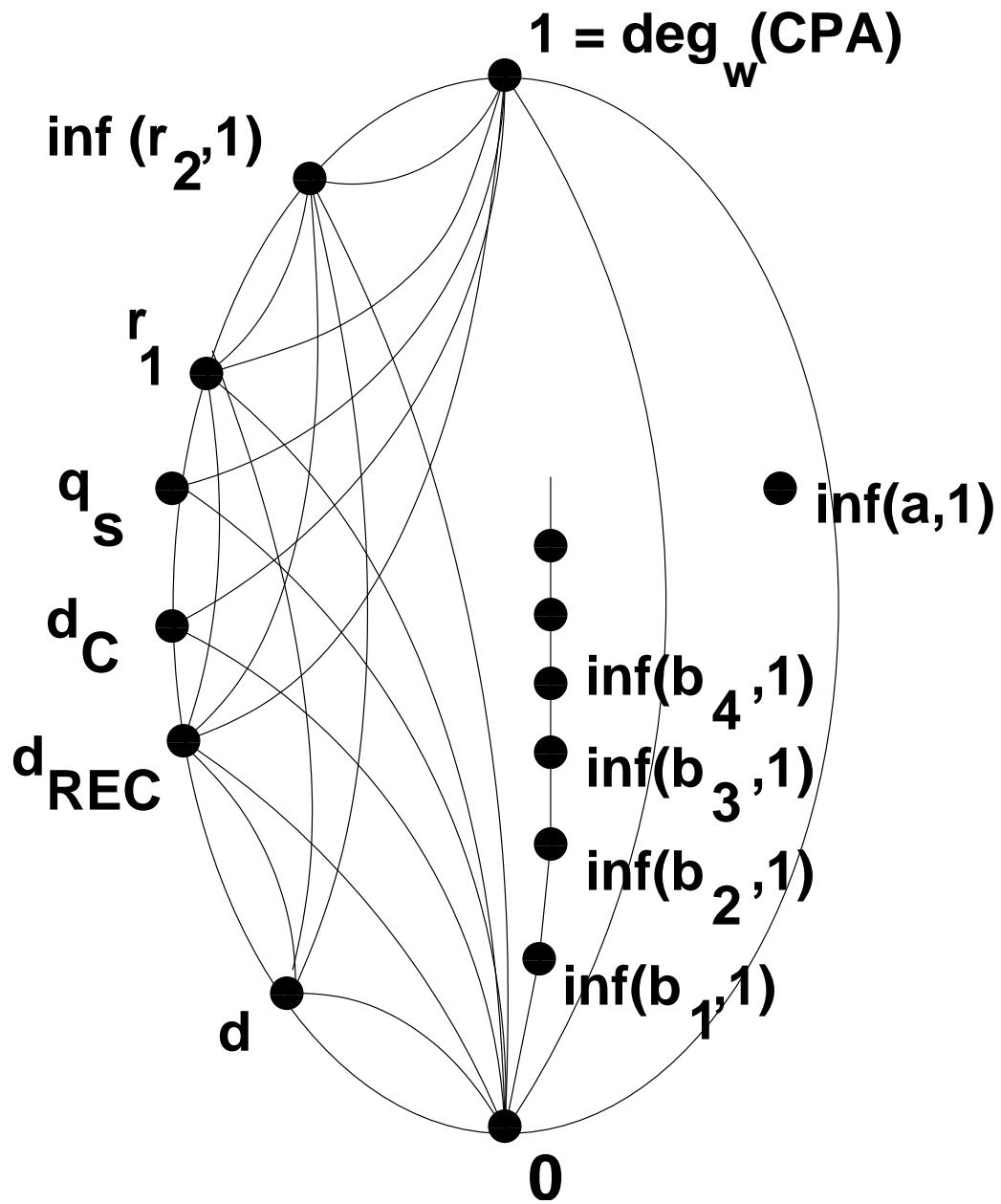
$$U = \bigcup_{n=0}^{\infty} \Omega_{s(n)}.$$

$P \subseteq \Omega$ is *effectively closed* if $\Omega \setminus P$ is effectively open.

$$\mathcal{E}_S = \{\deg_S(P) \mid \emptyset \neq P \subseteq \Omega, P \text{ eff. closed}\}.$$

$$\mathcal{E}_W = \{\deg_W(P) \mid \emptyset \neq P \subseteq \Omega, P \text{ eff. closed}\}.$$

Remark: \mathcal{E}_S and \mathcal{E}_W are countable sublattices of \mathcal{D}_S and \mathcal{D}_W respectively. Much is known about them. For instance, both \mathcal{E}_S and \mathcal{E}_W contain a bottom degree, denoted **0**, and a top degree, denoted **1**. Obviously $\mathbf{0} = \deg_S(\Omega) = \deg_W(\Omega)$. However, the existence of **1** in \mathcal{E}_S and \mathcal{E}_W is not so obvious. A well-known characterization of **1** will be mentioned later.



A picture of \mathcal{E}_w . Each black dot except $\text{inf}(a, 1)$ represents a specific, natural degree in \mathcal{E}_w . As time permits we shall explain some of these degrees.

Symbolic dynamics.

Let A be a finite set of symbols. Let $\mathbb{Z} =$ the integers $= \{\dots, -2, -1, 0, 1, 2, \dots\}$.

We write $A^{\mathbb{Z}} = \{x \mid x : \mathbb{Z} \rightarrow A\}$.

This is the *full shift space* on A .

The *shift operator* $S : A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$ is given by $S(x)(i) = x(i + 1)$ for all $i \in \mathbb{Z}$.

A *subshift* is a set $X \subseteq A^{\mathbb{Z}}$ which is closed, nonempty, and *shift invariant*, i.e., $\forall x (x \in X \Leftrightarrow S(x) \in X)$.

If X and Y are subshifts, a *shift morphism* from X to Y is a continuous mapping $f : X \rightarrow Y$ such that $f(S(x)) = S(f(x))$ for all $x \in X$.

Given $E \subseteq A^* = \bigcup_{n=0}^{\infty} A^n$ let $X_E = \{x \in A^{\mathbb{Z}} \mid (\forall i \in \mathbb{Z}) \forall n \langle x(i+1), \dots, x(i+n) \rangle \notin E\}$.

Thus E is a set of “excluded words.”

Clearly X_E is a subshift, provided it is $\neq \emptyset$.

Moreover, all subshifts are of this form.

If E is finite, the subshift X_E is said to be of *finite type*.

If E is computable, the subshift X_E is said to be of *computable type*.

Some easy remarks:

1. If $f : X \rightarrow Y$ is a shift morphism,
then $X \geq_s Y$ and $X \geq_w Y$.

In fact, f is a “block code.”

2. If $f, f^{-1} : X \leftrightarrow Y$ are shift morphisms,
then $X \equiv_s Y$ and $X \equiv_w Y$.

In other words, the strong and weak degrees
of a subshift are “conjugacy invariants.”

3. X is of computable type
if and only if X is effectively closed.

4. If X is of computable type,
then $\deg_s(X) \in \mathcal{E}_s$ and $\deg_w(X) \in \mathcal{E}_w$.

Theorem (Joseph Miller). Conversely,
each degree in \mathcal{E}_s or \mathcal{E}_w is, respectively,
the strong or weak degree of
a subshift of computable type.

The proof is ingenious but not difficult.

We now generalize to d -dimensional subshifts. For $d \geq 1$ we write $\mathbb{Z}^d = \underbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}_d$.

As before, let A be a finite set of symbols. The *full d -dimensional shift space* over A is $A^{\mathbb{Z}^d} = \{x \mid x : \mathbb{Z}^d \rightarrow A\}$. The *shift operators* $S_k : A^{\mathbb{Z}^d} \rightarrow A^{\mathbb{Z}^d}$ for $k = 1, \dots, d$ are given by $S_k(x)(i_1, \dots, i_d) = x(i_1, \dots, i_k + 1, \dots, i_d)$.

A *d -dimensional subshift* is a set $X \subseteq A^{\mathbb{Z}^d}$ which is closed, nonempty, and *shift invariant*, i.e., $(\forall k)_{1 \leq k \leq d} \forall x (x \in X \Leftrightarrow S_k(x) \in X)$.

Each d -dimensional subshift is of the form $X_E = \{x \in A^{\mathbb{Z}^d} \mid \forall n (\forall i_1, \dots, i_d \in \mathbb{Z}) (\langle x(i_1 + j_1, \dots, i_d + j_d) \rangle_{1 \leq j_1, \dots, j_d \leq n} \notin E)\}$

where $E \subseteq \bigcup_{n=0}^{\infty} A^{\{1, \dots, n\}^d}$. Thus E is

a set of “excluded d -dimensional words.”

If E is finite, we say that X_E is *of finite type*. If E is computable, we say that X_E is *of computable type*.

All of our earlier remarks about the 1-dimensional case extend easily to the d -dimensional case.

Theorem (Simpson). Each degree in \mathcal{E}_S or \mathcal{E}_W is, respectively, the strong or weak degree of a 2-dimensional subshift of finite type.

The proof uses techniques going back to Berger 1965 and R. Robinson 1972.

Another proof can be obtained by means of “self-replicating tile sets” (Durand/Romashchenko/Shen).

Remark. There are many specific, interesting degrees in \mathcal{E}_W . By the above theorems, each such degree is realized by a 1-dimensional subshift of computable type (Miller) and by a 2-dimensional subshift of finite type (Simpson).

A possibly interesting research program:

Given a subshift X , explore the relationship between X 's *dynamical properties* and X 's *degree of unsolvability*, i.e., $\deg_s(X)$ or $\deg_w(X)$.

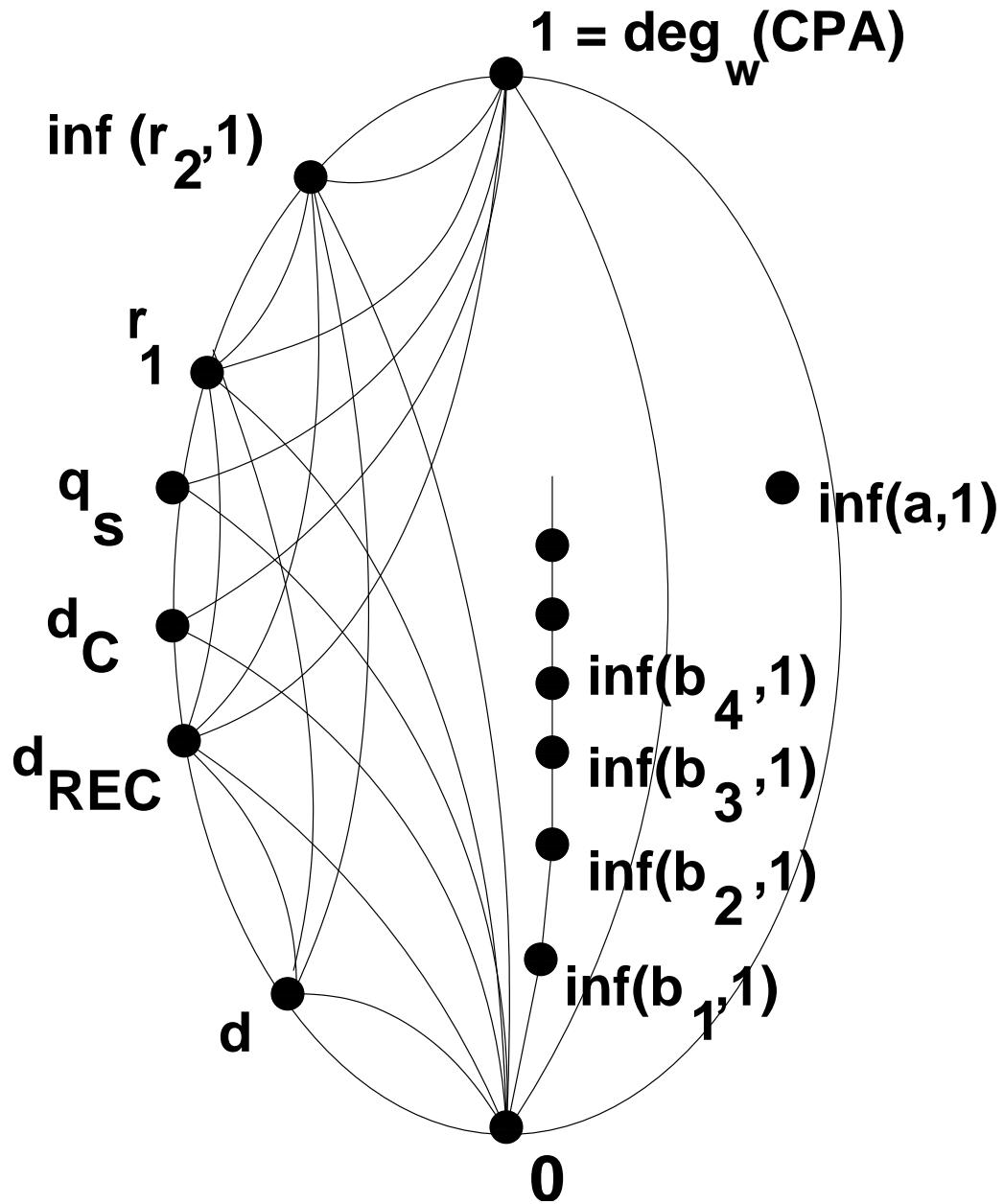
For example, the *entropy* of X is a well-known dynamical property which serves as an *upper bound* on the complexity of orbits. In particular $h(X) > 0$ implies $(\exists x \in X) (x \text{ is not computable})$.

By contrast, the degree of unsolvability of X serves as a *lower bound* on the complexity of orbits. E.g., $\deg_s(X) > 0 \Leftrightarrow \deg_w(X) > 0 \Leftrightarrow (\forall x \in X) (x \text{ is not computable})$.

Theorem (Hochman). If X is of computable type and *minimal* (i.e., every orbit is dense), then $\deg_s(X) = \deg_w(X) = 0$.

The proof is not difficult.

We finish by explaining some degrees in \mathcal{E}_w .



A picture of \mathcal{E}_w . Here a = any r.e. degree, r = randomness, b = LR-reducibility, q = dimension, d = diagonal nonrecursiveness.

We now explain some degrees in \mathcal{E}_w .

The top degree in \mathcal{E}_w is $1 = \deg_w(\text{CPA})$ where CPA is the problem of finding a complete, consistent theory which includes first-order arithmetic.

We also have $\inf(a, 1) \in \mathcal{E}_w$ where a is any recursively enumerable Turing degree.

We have $\mathbf{d} \in \mathcal{E}_w$ where $\mathbf{d} = \deg_w(\{f \in \mathbb{N}^{\mathbb{N}} \mid f \text{ is } \text{diagonally nonrecursive}\})$, i.e., $\forall n (f(n) \neq \varphi_n(n))$.

Let $\text{REC} = \{g \in \mathbb{N}^{\mathbb{N}} \mid g \text{ is recursive}\}$.

Let C be any “nice” subclass of REC .

For instance $C = \text{REC}$, or $C = \{g \in \text{REC} \mid g \text{ is primitive recursive}\}$. We have $\mathbf{d}_C \in \mathcal{E}_w$ where $\mathbf{d}_C = \deg_w(\{f \in \mathbb{N}^{\mathbb{N}} \mid f \text{ is diagonally nonrecursive and } C\text{-bounded}\})$, i.e., $(\exists g \in C) \forall n (f(n) < g(n))$.

Also, $\mathbf{d}_C = \deg_w(\{z \in \Omega \mid z \text{ is } C\text{-complex}\})$, i.e., $(\exists g \in C) \forall n (\mathbf{K}(z \upharpoonright \{1, \dots, g(n)\}) \geq n)\} \}.$ Moreover, $\mathbf{d}_{C'} < \mathbf{d}_C$ whenever C' contains a function which dominates all functions in C .

For $z \in \Omega$ let $\dim(z) =$ the *effective Hausdorff dimension* of z , i.e.,

$$\dim(z) = \liminf_{n \rightarrow \infty} \frac{\mathbf{K}(z \upharpoonright \{1, \dots, n\})}{n}.$$

Given a right recursively enumerable real number s , we have $\mathbf{q}_s \in \mathcal{E}_w$ where

$$\mathbf{q}_s = \deg_w(\{z \mid \dim(z) > s\}).$$

Moreover, $s < t$ implies $\mathbf{q}_s < \mathbf{q}_t$ (Miller).

We have $\mathbf{r}_1 \in \mathcal{E}_w$ where $\mathbf{r}_1 = \deg_w(\{z \in \Omega \mid z \text{ is random in the sense of Martin-Löf}\})$.

We also have $\inf(\mathbf{r}_2, 1) \in \mathcal{E}_w$ where $\mathbf{r}_2 = \deg_w(\{z \in \Omega \mid z \text{ is random relative to the halting problem}\})$.

Using x as an oracle, define

$$R^x = \{z \in \Omega \mid z \text{ is random relative to } x\}$$

and $K^x(n) =$ the prefix-free Kolmogorov complexity of n relative to x .

$$\text{Define } x \leq_{LR} y \Leftrightarrow R^y \subseteq R^x$$

$$\text{and } x \leq_{LK} y \Leftrightarrow \exists c \forall n (K^y(n) \leq K^x(n) + c).$$

Theorem (Miller/Kjos-Hanssen/Solomon).
We have $x \leq_{LR} y$ if and only if $x \leq_{LK} y$.

For each recursive ordinal number α , let $0^{(\alpha)}$ = the α th iterated Turing jump of 0. Thus $0^{(1)}$ = the halting problem, and $0^{(\alpha+1)}$ = the halting problem relative to $0^{(\alpha)}$, etc. This is the hyperarithmetical hierarchy. We embed it naturally into \mathcal{E}_W as follows.

Theorem (Simpson). $0^{(\alpha)} \leq_{LR} y \Leftrightarrow$
every $\Sigma_{\alpha+2}^0$ set includes a $\Sigma_2^{0,y}$ set
of the same measure. Moreover,
letting $b_\alpha = \deg_W(\{y \mid 0^{(\alpha)} \leq_{LR} y\})$ we have
 $\inf(b_\alpha, 1) \in \mathcal{E}_W$ and $\inf(b_\alpha, 1) < \inf(b_{\alpha+1}, 1)$.

References:

Stephen G. Simpson, Mass problems and randomness, *Bulletin of Symbolic Logic*, 11, 2005, pages 1–27.

Stephen G. Simpson, Medvedev degrees of 2-dimensional subshifts of finite type, 8 pages, 1 May 2007; accepted 26 September 2007 for publication in *Ergodic Theory and Dynamical Systems*.

Stephen G. Simpson, Mass problems and intuitionism, *Notre Dame Journal of Formal Logic*, 49, 2008, pages 127–136.

Stephen G. Simpson, Mass problems and measure-theoretic regularity, *Bulletin of Symbolic Logic*, 15, 2009, pages 385–409.

THE END.

THANK YOU!