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Degrees of unsolvability.

Let N = {the natural numbers} = {0,1,2, . . .}.

Let Ω = {0,1}N = {x | x : N → {0,1}}
= the Cantor space.

Consider a Turing machine M with three

infinite tapes: the input tape, the output

tape, and the scratch tape. Assume that the

input tape is read-only, and the output tape

is write-once. We then use M to define a

functional ΦM :⊆ Ω → Ω, as follows.

Given x, y ∈ Ω let M(x) = the run of M

starting with x on the input tape and blanks

on the output and scratch tapes. We define

ΦM(x) = y if and only if M(x) writes y on the

output tape. Otherwise ΦM(x) is undefined.

Here x is used as an “oracle” which helps us

to compute y. We say that y is computable

relative to x. This idea came from Turing.

Note that ΦM is continuous on its domain.
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For sets P, Q ⊆ Ω we define:

P ≥s Q, i.e., Q is strongly reducible to P ,

if and only if ∃M ∀x (x ∈ P ⇒ ΦM(x) ∈ Q).

In other words, ΦM ↾ P : P → Q.

P ≥w Q,i.e., Q is weakly reducible to P ,

if and only if ∀x∃M (x ∈ P ⇒ ΦM(x) ∈ Q).

Motivation: The sets P, Q ⊆ Ω are regarded

as “problems.” The “solutions” of P are just

the elements of the set P . Such problems are

known as mass problems. The problem P is

said to be “solvable” if at least one of its

solutions is computable. Otherwise P is said

to be “unsolvable.” The problem Q is said to

be “reducible” to the problem P if each

solution x of P can be used as an oracle to

compute some solution y of Q.

The distinction between ≥s and ≥w lies in

whether or not the Turing machine M which

computes y relative to x is required to be

independent of x.
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History:

Kolmogorov 1932 developed his “calculus of

problems” as a nonrigorous yet compelling

explanation of Brouwer’s intuitionism. Later

Medvedev 1955 and Muchnik 1963 proposed

strong and weak reducibility as rigorous

explications of Kolmogorov’s idea.

Some references:

Stephen G. Simpson, Mass problems and randomness,
Bulletin of Symbolic Logic, 11, 2005, pages 1–27.

Stephen G. Simpson, Medvedev degrees of
2-dimensional subshifts of finite type, 8 pages, 1 May
2007; accepted 26 September 2007 for publication in
Ergodic Theory and Dynamical Systems.

Stephen G. Simpson, Mass problems and intuitionism,
Notre Dame Journal of Formal Logic, 49, 2008, pages
127–136.

Stephen G. Simpson, Mass problems and
measure-theoretic regularity, Bulletin of Symbolic
Logic, 15, 2009, pages 385–409.
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More definitions:

P ≡s Q ⇔ (P ≤s Q ∧ Q ≤s P).

P ≡w Q ⇔ (P ≤w Q ∧ Q ≤w P).

degs(P) = {Q | P ≡s Q}

= the strong degree of P .

degw(P) = {Q | P ≡w Q}

= the weak degree of P .

Ds = {degs(P) | P ⊆ Ω}.

Ds has a partial ordering ≤ induced by ≤s.

Dw = {degw(P) | P ⊆ Ω}.

Dw has a partial ordering ≤ induced by ≤w.

Remark: Medvedev 1955 and Muchnik 1963

respectively noted that Ds and Dw are

complete Brouwerian lattices. Aspects of

these lattices have been studied by Dyment,

Skvortsova, Sorbi, Terwijn, and others.

Note: The cardinality of Ds and Dw is 22ℵ0.
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Yet more definitions:

U ⊆ Ω is effectively open if there exists a

comptable function s : N → {0,1}∗ such that

U =
∞⋃

n=0

Ωs(n).

P ⊆ Ω is effectively closed if Ω \ P is

effectively open.

Es = {degs(P) | ∅ 6= P ⊆ Ω, P eff. closed}.

Ew = {degw(P) | ∅ 6= P ⊆ Ω, P eff. closed}.

Remark: Es and Ew are countable sublattices

of Ds and Dw respectively. Much is known

about them. For instance, both Es and Ew

contain a bottom degree, denoted 0, and

a top degree, denoted 1. Obviously

0 = degs(Ω) = degw(Ω). However, the

existence of 1 in Es and Ew is not so obvious.

A well-known characterization of 1 will be

mentioned later.
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A picture of Ew. Each black dot except

inf(a, 1) represents a specific, natural degree

in Ew. As time permits we shall explain some

of these degrees.
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Symbolic dynamics.

Let A be a finite set of symbols. Let Z =

the integers = {. . . ,−2,−1,0,1,2, . . .}.

We write AZ = {x | x : Z → A}.

This is the full shift space on A.

The shift operator S : AZ → AZ is given

by S(x)(i) = x(i + 1) for all i ∈ Z.

A subshift is a set X ⊆ AZ which is

closed, nonempty, and shift invariant,

i.e., ∀x (x ∈ X ⇔ S(x) ∈ X).

If X and Y are subshifts, a shift morphism

from X to Y is a continuous mapping

f : X → Y such that f(S(x)) = S(f(x))

for all x ∈ X.

8



Given E ⊆ A∗ =
∞⋃

n=0

An let XE =

{x ∈ AZ | (∀i ∈ Z) ∀n 〈x(i+1), . . . , x(i+n)〉 /∈ E}.

Thus E is a set of “excluded words.”

Clearly XE is a subshift, provided it is 6= ∅.

Moreover, all subshifts are of this form.

If E is finite, the subshift XE

is said to be of finite type.

If E is computable, the subshift XE

is said to be of computable type.
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Some easy remarks:

1. If f : X → Y is a shift morphism,

then X ≥s Y and X ≥w Y .

In fact, f is a “block code.”

2. If f, f−1 : X ↔ Y are shift morphisms,

then X ≡s Y and X ≡w Y .

In other words, the strong and weak degrees

of a subshift are “conjugacy invariants.”

3. X is of computable type

if and only if X is effectively closed.

4. If X is of computable type,

then degs(X) ∈ Es and degw(X) ∈ Ew.

Theorem (Joseph Miller). Conversely,

each degree in Es or Ew is, respectively,

the strong or weak degree of

a subshift of computable type.

The proof is ingenious but not difficult.
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We now generalize to d-dimensional subshifts.
For d ≥ 1 we write Zd = Z × · · · × Z

︸ ︷︷ ︸

d

.

As before, let A be a finite set of symbols.
The full d-dimensional shift space over A is

AZd
= {x | x : Zd → A}. The shift operators

Sk : AZd
→ AZd

for k = 1, . . . , d are given by

Sk(x)(i1, . . . , id) = x(i1, . . . , ik + 1, . . . , id).

A d-dimensional subshift is a set X ⊆ AZd

which is closed, nonempty, and shift invariant,
i.e., (∀k)1≤k≤d∀x (x ∈ X ⇔ Sk(x) ∈ X).

Each d-dimensional subshift is of the form

XE = {x ∈ AZd
| ∀n (∀i1, . . . , id ∈ Z)

(〈x(i1 + j1, . . . , id + jd)〉1≤j1,...,jd≤n /∈ E)}

where E ⊆
∞⋃

n=0

A{1,...,n}d
. Thus E is

a set of “excluded d-dimensional words.”

If E is finite, we say that XE is of finite type.

If E is computable, we say that XE is
of computable type.
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All of our earlier remarks about the

1-dimensional case extend easily to the

d-dimensional case.

Theorem (Simpson). Each degree in Es or

Ew is, respectively, the strong or weak degree

of a 2-dimensional subshift of finite type.

The proof uses techniques going back to

Berger 1965 and R. Robinson 1972.

Another proof can be obtained

by means of “self-replicating tile sets”

(Durand/Romashchenko/Shen).

Remark. There are many specific, interesting

degrees in Ew. By the above theorems, each

such degree is realized by a 1-dimensional

subshift of computable type (Miller) and

by a 2-dimensional subshift of finite type

(Simpson).
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A possibly interesting research program:

Given a subshift X, explore the relationship

between X’s dynamical properties

and X’s degree of unsolvability,

i.e., degs(X) or degw(X).

For example, the entropy of X is a

well-known dynamical property which serves

as an upper bound on the complexity of

orbits. In particular h(X) > 0 implies

(∃x ∈ X) (x is not computable).

By contrast, the degree of unsolvability of X
serves as a lower bound on the complexity of

orbits. E.g., degs(X) > 0 ⇔ degw(X) > 0 ⇔
(∀x ∈ X) (x is not computable).

Theorem (Hochman). If X is of computable

type and minimal (i.e., every orbit is dense),

then degs(X) = degw(X) = 0.

The proof is not difficult.

We finish by explaining some degrees in Ew.
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A picture of Ew. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, q =

dimension, d = diagonal nonrecursiveness.
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We now explain some degrees in Ew.

The top degree in Ew is 1 = degw(CPA)

where CPA is the problem of finding

a complete, consistent theory which

includes first-order arithmetic.

We also have inf(a, 1) ∈ Ew where a is

any recursively enumerable Turing degree.

We have d ∈ Ew where d = degw({f ∈ NN |

f is diagonally nonrecursive}),

i.e., ∀n (f(n) 6= ϕn(n)).

Let REC = {g ∈ NN | g is recursive}.

Let C be any “nice” subclass of REC.

For instance C = REC, or C = {g ∈ REC |

g is primitive recursive}. We have dC ∈ Ew

where dC = degw({f ∈ NN | f is diagonally

nonrecursive and C-bounded}),

i.e., (∃g ∈ C)∀n (f(n) < g(n)).
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Also, dC = degw({z ∈ Ω | z is C-complex},

i.e., (∃g ∈ C)∀n (K(z ↾ {1, . . . , g(n)}) ≥ n)}).

Moreover, dC′ < dC whenever C′ contains a

function which dominates all functions in C.

For z ∈ Ω let dim(z) = the

effective Hausdorff dimension of x, i.e.,

dim(z) = lim inf
n→∞

K(z ↾ {1, . . . , n})

n
.

Given a right recursively enumerable real

number s, we have qs ∈ Ew where

qs = degw({z | dim(z) > s}).

Moreover, s < t implies qs < qt (Miller).

We have r1 ∈ Ew where r1 = degw({z ∈ Ω |

z is random in the sense of Martin-Löf}).

We also have inf(r2, 1) ∈ Ew where

r2 = degw({z ∈ Ω | z is random relative to

the halting problem}).
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Using x as an oracle, define

Rx = {z ∈ Ω | z is random relative to x}

and Kx(n) = the prefix-free Kolmogorov

complexity of n relative to x.

Define x ≤LR y ⇔ Ry ⊆ Rx

and x ≤LK y ⇔ ∃c∀n (Ky(n) ≤ Kx(n) + c).

Theorem (Miller/Kjos-Hanssen/Solomon).

We have x ≤LR y if and only if x ≤LK y.

For each recursive ordinal number α, let

0(α) = the αth iterated Turing jump of 0.

Thus 0(1) = the halting problem, and

0(α+1) = the halting problem relative to 0(α),

etc. This is the hyperarithmetical hierarchy.

We embed it naturally into Ew as follows.

Theorem (Simpson). 0(α) ≤LR y ⇔

every Σ0
α+2 set includes a Σ

0,y
2 set

of the same measure. Moreover,

letting bα = degw({y | 0(α) ≤LR y}) we have

inf(bα, 1) ∈ Ew and inf(bα, 1) < inf(bα+1, 1).
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THE END.

THANK YOU!
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