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Two books on reverse mathematics,

a status report:

1. RM2001

S. G. Simpson, editor

Reverse Mathematics 2001

(a volume of papers by various authors)

Volume 21, Lecture Notes in Logic

Association for Symbolic Logic

VIII + 401 pages, 2005

2. SOSOA

Stephen G. Simpson

Subsystems of Second Order Arithmetic

Second Edition

Perspectives in Logic

Association for Symbolic Logic

approximately 460 pages, in press
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Reverse mathematics is a particular program

within the foundations of mathematics.

The purpose of reverse mathematics is to

discover which set existence axioms are

needed in order to prove specific theorems of

ordinary or core mathematics: real analysis,

functional analysis, complex analysis,

countable algebra, countable combinatorics,

geometry, etc.

Often the theorems turn out to be equivalent

to the axioms. Hence the slogan “reverse

mathematics”.

The language of second-order arithmetic is in

some sense the most economical one for the

logical, axiomatic development of the bulk of

core mathematics. Therefore, in my book

SOSOA, reverse mathematics is carried out

in this context.
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Some of the most important subsystems of
second-order arithmetic are:

RCA0 (= recursive comprehension), WKL0,

ACA0 (= arithmetical comprehension), ATR0,

Π1
1-CA0 (= Π1

1 comprehension).

These five systems collectively are known as
“THE BIG FIVE”.

In this talk we move beyond the big five, to
Π1

2-CA0, i.e., Π1
2 comprehension, which is

known to be much, much stronger than
Π1

1 comprehension.

In recent years Rathjen and his colleagues
have achieved excellent proof-theoretical
understanding of Π1

2-CA0: ordinal notations,
inductive definitions, µ-calculus.

Therefore, it seems safe to say:

In principle, any core mathematical theorem
which is provable in Π1

2-CA0 can be given a
constructive formulation which can then be
proved constructively.
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Remark:

This talk represents joint work with Carl

Mummert, my recent Ph.D. student at the

Pennsylvania State University.

Background:

In my book SOSOA, a complete separable

metric space is defined as the completion

X = (Â, d̂) of a countable pseudometric space

(A, d). Here A ⊆ N and d : A× A→ R.

Thus complete separable metric spaces are

“coded” by countable objects. Using this

coding, a great deal of analysis and geometry

is developed in RCA0, with many reverse

mathematics results.
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A conceptual difficulty:

Before Mummert/Simpson, there was no
reverse mathematics study of general
topology.

The obstacle was, there was no way to
discuss abstract topological spaces in L2, the
language of second-order arithmetic. This
was the case even for topological spaces
which are separable or second countable.

The solution:

We overcome this obstacle by introducing a
restricted class of topological spaces, called
countably based MF spaces.

This class includes all complete separable
metric spaces, as well as many nonmetrizable
spaces.

Furthermore, this class of spaces can be
discussed in L2.
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Let P be a poset, i.e., a partially ordered set.

Definition. A filter is a set F ⊆ P such that

1. F is upward closed, i.e.,
(p ∈ F ∧ q ≥ p) ⇒ q ∈ F .

2. for all p, q ∈ F there exists r ∈ F such that
p ≥ r ∧ q ≥ r.

Compare the treatment of forcing in Kunen’s
textbook of axiomatic set theory.

Definition. A maximal filter is a filter which
is not properly included in any other filter.

By Zorn’s Lemma, every filter is included in a
maximal filter.

Definition.
MF(P) = {F | F is a maximal filter on P}.
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Definition.

MF(P) = {F | F is a maximal filter on P}.

MF(P) is a topological space with basic open
sets

Np = {F | p ∈ F}
for all p ∈ P .

Definition. An MF space is a space of the
form MF(P) where P is a poset.

Definition. A countably based MF space is a
space of the form MF(P) where P is a

countable poset.

Thus, the second countable topological space
MF(P) is “coded” by the countable poset P .

Therefore, countably based MF spaces can be
defined and discussed in L2. Thus we can do
reverse mathematics in the usual setting,
subsystems of second-order arithmetic.
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Characterization problems:

1. To characterize those topological spaces

which are homeomorphic to MF spaces.

2. To characterize those topological spaces

which are homeomorphic to countably based

MF spaces.

The first problem remains unsolved. The

second problem has recently been solved by

Carl Mummert and Frank Stephan.

Theorem (Mummert/Stephan).

Let X be a topological space.

The following are equivalent.

1. X is homeomorphic to

a countably based MF space.

2. X is second countable and

has the strong Choquet property,

and each point of X is a closed set.
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Examples of MF spaces.

Many topological spaces are homeomorphic

to MF spaces:

• all complete metric spaces.

• all locally compact Hausdorff spaces.

• the weak-star dual of any Banach space.

• any Gδ subset of any MF space.

• the Baire space ωω with the topology

generated by the Σ1
1 sets,

i.e., the Gandy/Harrington topology.

The latter is a neat example of a countably

based MF space which is Hausdorff but not

metrizable. However, the dense open subset

{f ∈ ωω | ωf1 = ωCK
1 } is completely metrizable.
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Theorem. Every complete (separable) metric
space is homeomorphic to a (countably
based) MF space.

Proof (sketch). Let Â be a complete metric
space with dense subset A. Let P = A×Q+

ordered by (a, r) < (b, s) if and only if
d(a, b) + r < s. We argue that MF(P) is
homeomorphic to X. Given a maximal filter
F on P , we claim that inf{r | (a, r) ∈ F} = 0.
Suppose the inf is h > 0. Let (a, r) ∈ F be
such that h ≤ r < 4h/3. We show that
(a, r/3) < (b, s) for all (b, s) ∈ F , contradicting
maximality. Given (b, s) ∈ F , let (c, t) ∈ F be
such that (c, t) < (a, r) and (c, t) < (b, s). We
have h ≤ t < r < 4h/3 and
d(a, c) + h ≤ d(a, c) + t < r < 4h/3, hence
d(a, c) < h/3, hence d(a, c) + r/3 <
d(a, c) + 4h/9 ≤ h/3 + 4h/9 = 7h/9 < t so
(a, r/3) < (c, t) < (b, s), proving the claim.
Hence F is generated by
(a0, r0) > (a1, r1) > · · · > (an, rn) > · · ·
with limn rn = 0, giving a point of Â.
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Metrization theorems:

Urysohn Metrization Theorem. A second

countable topological space is metrizable if

and only if it is regular. (A topological space

is said to be regular if, for every open set U

and point x ∈ U , there exists an open set V

such that x ∈ V and the closure of V is

included in U . See Kelley, General Topology.)

Choquet Metrization Theorem. A

topological space is completely metrizable if

and only if it is metrizable and has the

strong Choquet property. (This is a

game-theoretic property which is similar to,

but stronger than, the property of Baire. See

Kechris, Classical Descriptive Set Theory.)

Theorem. All MF spaces have the strong

Choquet property. (See Mummert’s Ph.D.

thesis, 2005.)
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Metrization theorems, continued.

Combining the above results, we have the

following metrization theorem for countably

based MF spaces.

MFMT: A countably based MF space

is completely metrizable if and only if

it is regular.

Note that the statement MFMT can be

formalized as a sentence in the language of

second-order arithmetic.

We study the reverse mathematics of MFMT.

13



We consider the following subsystems of

second-order arithmetic.

ACA0 = arithmetical comprehension.

Π1
1-CA0 = Π1

1 comprehension.

Π1
2-CA0 = Π1

2 comprehension.

Remark. The fundamental concepts of the

theory of MF spaces can be formalized in

ACA0. In particular, it is provable in ACA0 that

every complete separable metric space is

homeomorphic to a countably based MF

space.

Theorem (Mummert/Simpson).

MFMT is equivalent to Π1
2-CA0.

The equivalence is provable in Π1
1-CA0.

We outline the proof of this theorem.

14



Lemma 1. MFMT is provable in Π1
2-CA0.

Proof. Part 1. Assume MF(P) is regular.
Use Π1

2 comprehension to form the set
{(p, q) ∈ P × P | Np ⊇ closure of Nq}.
Use this set as a parameter. Follow Matthias
Schröder’s effective adaptation of the original
Urysohn argument, to find a metric d1 for
MF(P). Thus MF(P) is metrizable.

Part 2. Fix a countable dense set
A ⊆ MF(P). Use Π1

2 comprehension to form
the sets {(a, r, p) ∈ A×Q+ × P | B(a, r) ⊆ Np}
and {(a, r, p) ∈ A×Q+ × P | Np ⊆ B(a, r)},
where B(a, r) = {x ∈ MF(P) | d1(a, x) < r}.
Using these sets as parameters, construct a
Gδ set in (Â, d̂1) which has the same points
as MF(P) and is homeomorphic to MF(P). It
follows that MF(P) is homeomorphic to a
complete separable metric space (Â, d̂2).

Note: Choquet’s game-theoretic argument is
not formalizable in second-order arithmetic.
Instead, we argue directly within Π1

2-CA0.
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Lemma 2. Over Π1
1-CA0, MFMT implies Π1

2
comprehension.

Proof. Let ψ(n,X) be a Π1
1 formula.

Assuming MFMT, we prove the existence of
the Σ1

2 set S = {n | ∃X ψ(n,X)}.

We write ψ(n,X) ≡ ¬∃f ∀mR(n,X[m], f [m])
where X[m] = 〈X(0), . . . , X(m− 1)〉 and
f [m] = 〈f(0), . . . , f(m− 1)〉. Let P be the
countable poset consisting of all (n,X[k], f [k])
such that (∀m ≤ k)R(n,X[m], f [m]), plus all
(n,X[k]), partially ordered by:

1. (n,X[k], f [k]) < (n′, X ′[k′], f ′[k′]) iff n = n′
and X[k] ⊃ X ′[k′] and f [k] ⊃ f ′[k′].

2. (n,X[k]) < (n′, X ′[k′]) iff n = n′ and
X[k] ⊃ X ′[k′].

3. (n,X[k], f [k]) < (n′, X ′[k′]) iff n = n′ and
X[k] ⊃ X ′[k′].

4. (n,X[k]) < (n′, X ′[k′], f ′[k′]) never.
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The maximal filters on P are of three types:

1. F = {p ∈ P | q ≤ p},
where q is a minimal element of P .

2. F = {(n,X[k], f [k]), (n,X[k]) | k ∈ N},
where n,X, f are such that
∀mR(n,X[m], f [m]) holds.

3. F = {(n,X[k]) | k ∈ N},
where n,X are such that ψ(n,X) holds.

Let C be the closed set in MF(P) consisting
of all F of type 3. The complement of C is
the open set

⋃
n∈NN(n,〈〉,〈〉).

By Kondo’s Π1
1 Uniformization Theorem

(provable in Π1
1-CA0, SOSOA §VI.2), we may

assume that ∀n (∃ at most one X)ψ(n,X).
Thus, for each n, C ∩N(n,〈〉) contains at most
one point.

Under this assumption, it is straightforward
to show that MF(P) is regular.
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By MFMT, there is a homeomorphism
Φ : MF(P) ∼= Â, where Â is a complete
separable metric space. In particular,
Φ(C) ⊆ Â is closed, and the open sets
Φ(N(n,〈〉)) ⊆ Â are arithmetical uniformly in n,
using a code of Φ−1 as a parameter. Hence
by Π1

1 comprehension we may form the set

S = {n | Φ(C) ∩Φ(N(n,〈〉)) 6= ∅}
= {n | C ∩N(n,〈〉) 6= ∅}
= {n | ∃X ψ(n,X)} .

This completes the proof.

Remark. This is the first instance of a core
mathematical theorem equivalent to Π1

2
comprehension. Previous reverse mathematics
results within second-order arithmetic have
involved only weaker set existence axioms.

(However, Heinatsch and Möllerfeld have
shown that Π1

2-CA0 proves the same Π1
1

sentences as ACA0 +<ω-Σ0
2 determinacy.)
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Another result:

Theorem (Mummert). The following are

equivalent over ATR0.

1. In any countably based MF space, any

uncountable closed set contains a perfect set.

2. ∀X (ℵL(X)
1 is countable).
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