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Abstract. Mathematical logic provides several frameworks for analyzing

the “complexity” or “nonconstructivity” of a given mathematical

theorem. Among these frameworks are: computable analysis, degrees of

unsolvability, reverse mathematics, and algorithmic randomness. Each

of these frameworks provides a different kind of information. In this talk

I shall analyze a few nonconstructive mathematical theorems from each

of these points of view.
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In this talk we compare four methods for determining the “complexity”

or “nonconstructivity” of a given mathematical theorem.

1. computable analysis (Markov school, . . . , Weihrauch school)

2. degrees of unsolvability (Kleene/Post, Muchnik, Sacks, . . . )

3. reverse mathematics (Kreisel, Friedman, Simpson, . . . )

4. algorithmic randomness (Martin-Löf, Nies, Downey/Hirschfeldt, . . . )

Each of these four approaches gives a different kind of information.

In order to compare these four approaches, we analyze a few

mathematical theorems from all four points of view.

1. The theorem entails the existence of noncomputable objects.

2. We can measure the amount of noncomputability of these objects.

3. The proof of the theorem requires strong nonconstructive axioms,

and we can measure the strength of these axioms.

4. The theorem entails randomness, Kolmogorov complexity, . . . .
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We begin by analyzing the following well known theorem.

Theorem. Let (ai, bi), i = 1,2,3, . . . be a sequence of open intervals

which cover the unit interval: [0,1] ⊆
∞⋃

i=1

(ai, bi). Then there exists a

finite subcovering: [0,1] ⊆
n⋃

i=1

(ai, bi) for some n.

This theorem is known as the Heine/Borel Covering Lemma.

It plays a fundamental role in real analysis, etc.

In order to analyze this theorem, we may consider the contrapositive:

If each finite subsequence (ai, bi), i = 1, . . . , n fails to cover [0,1],

then the entire sequence (ai, bi), i = 1,2,3, . . . fails to cover [0,1],

i.e., there exists a real number x ∈ [0,1] \
∞⋃

i=1

(ai, bi).

3



1. COMPUTABLE ANALYSIS.

We construct a “computable counterexample”:

a computable sequence of rational open intervals (ai, bi), i = 1,2,3, . . .,

such that |ai − bi| = 1/2i+1 and for all i, if i is an index of a computable

real number x, then ai < x < bi.

No finite subsequence (ai, bi), i = 1, . . . , n can cover all of the

computable real numbers in [0,1], because
n∑

i=1

|ai − bi| <
1

2
.

However, the entire sequence (ai, bi), i = 1,2,3, . . .

covers all of the computable real numbers. In other words,

there is no computable real number x ∈ [0,1] \
∞⋃

i=1

(ai, bi).

In this sense, the Heine/Borel Covering Lemma is “computably false,”

i.e., false in the computable world. Given a computable sequence of

rational intervals (ai, bi), i = 1,2,3, . . . which does not cover [0,1],

it is not always possible to compute a real number x as above.
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2. DEGREES OF UNSOLVABILITY.

We now wish to measure the amount of noncomputability which is

inherent in the Heine/Borel Covering Lemma.

Definition (Turing). Let x, y ∈ {0,1}∞ be infinite sequences of 0’s and

1’s. We inscribe y on the left half of a Turing machine tape and use it

as an “oracle.” We say that x is computable from the oracle y if there

exists a Turing program M with the following property: for each

positive integer n, if we start M with (y on the left half of the tape and)

n on the right half of the tape, then M will eventually halt with

the nth bit of x on the right half of the tape. In this case we write

x = ΦM(y) and we say that x is Turing reducible to y.

Definition (Yu. T. Medvedev, 1955). A mass problem is a set

P ⊆ {0,1}∞. (Intuitively, P represents the “problem” of finding an

element of the set P .) Given mass problems P and Q, we say that P is

strongly reducible to Q if there exists a Turing program M such that for

all y ∈ Q there exists x ∈ P such that x = ΦM(y).

Definition (A. A. Muchnik, 1963). Given mass problems P and Q, we

say that P is weakly reducible to Q if for all y ∈ Q there exist x ∈ P and

a Turing program M such that x = ΦM(y).
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The relations of strong reducibility and weak reducibility are transitive

and reflexive. We can therefore make the following definitions.

Definition. A strong degree or Medvedev degree is an equivalence class

of mass problems under the equivalence relation “P and Q are strongly

reducible to each other.” The set of all strong degrees is denoted Ds.

Definition. A weak degree or Muchnik degree is an equivalence class

of mass problems under the equivalence relation “P and Q are weakly

reducible to each other.” The set of all weak degrees is denoted Dw.

Remark. It can be shown that Ds and Dw are lattices,

under strong and weak reducibility, respectively.

Given a computable sequence of open intervals (ai, bi), i = 1,2,3, . . .,

such that the set P = [0,1] \
∞⋃

i=0

(ai, bi) is nonempty, we can ask:

What is the strong or weak degree of the mass problem P?

In other words, what kind of oracle would we need in order to compute

(the binary expansion of) some real number x ∈ P?

Here is a picture of the weak degrees of this type.

This sublattice of Dw is denoted Ew.
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A picture of Ew.

Note. Ew is the lattice of weak degrees

of nonempty, effectively closed subsets of [0,1].
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From this picture we see that Ew contains many specific, interesting

degrees of unsolvability.

I am writing a book about Ew. A survey paper on Ew is:

Stephen G. Simpson, Mass problems associated with effectively closed

sets, Tohoku Mathematical Journal, 63, 2011, pp. 489–517.

The top degree 1 ∈ Ew is especially interesting. It can be described as

the weak degree of the problem of finding an oracle y such that for any

computable sequence of open intervals (ai, bi), i = 1,2,3, . . . as above,

we can find an x ∈ [0,1] \
∞⋃

i=0

(ai, bi) such that x = ΦM(y) for some

Turing program M .

The degree 1 ∈ Ew can also be characterized as the weak degree of the

problem of finding a complete, consistent extension of first-order Peano

arithmetic. Or, replace Peano arithmetic by any consistent, recursively

axiomatizable theory in which Robinson’s Q is interpretable. For

example, ZFC, assuming that ZFC is consistent.
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3. REVERSE MATHEMATICS.

The goal of reverse mathematics is to answer questions of the following

type. Given a mathematical theorem τ , what are the weakest axioms

needed to prove τ?

Let Z2 denote second-order arithmetic. Experience shows that reverse

mathematics is best carried out in the context of subsystems of Z2.

In this context, the above question often has a precise answer. Namely,

the axioms needed to prove τ are often logically equivalent to τ , over

a weak base theory. Furthermore, there is a manageable hierarchy of

axioms which frequently arise in this way.

Five subsystems of Z2 which are crucially important for reverse

mathematics are, in order of increasing strength:

RCA0, WKL0, ACA0, ATR0, Π1
1-CA0.

These are known as “The Big Five.” The first system RCA0 usually

serves as the weak base theory. See my book:

Stephen G. Simpson, Subsystems of Second Order Arithmetic, Second

Edition, Perspectives in Logic, Association for Symbolic Logic, 2009,

XVI + 444 pages.
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RCA0 = a kind of formalized computable mathematics.

WKL0 = RCA0 + Weak König’s Lemma.

ACA0 = RCA0 + arithmetical comprehension.

ATR0 = RCA0 + arithmetical transfinite recursion.

Π1
1-CA0 = RCA0 + Π1

1 comprehension.

It turns out that the Heine/Borel Covering Lemma is logically

equivalent to WKL0 over RCA0. Furthermore, there is a long list of

other famous mathematical theorems, each of which is logically

equivalent to WKL0 over RCA0. Here is a partial list:

Every continuous real-valued function on [0,1] is uniformly continuous.

Every continuous real-valued function on [0,1] is bounded. Every

continuous real-valued function on [0,1] has a Riemann integral. Every

continuous real-valued function on [0,1] has a maximum value. Every

countable commutative ring has a prime ideal. Every countable field has

a unique algebraic closure. Brouwer’s Fixed Point Theorem. Peano’s

Existence Theorem for solutions of ordinary differential equations. The

Hahn/Banach Theorem for separable Banach spaces. Etc., etc.
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As is the case for the system WKL0, each of the systems ACA0 and

ATR0 and Π1
1-CA0 has an associated list of mathematical theorems,

each of which is logically equivalent to the given system over RCA0.

In this way, many mathematical theorems are grouped into

a small number of “logical equivalence classes” over RCA0.

This outcome of reverse mathematics seems to be of general

intellectual interest.

Remark 1. Weihrauch 1990 introduced another degree notion, the

Weihrauch degrees, which provides detailed insight into many reverse

mathematics constructions. The Weihrauch lattice is somewhat similar

to the Medvedev lattice, but harder to define and more comprehensive.

Remark 2. Many subsystems of Z2, including the Big Five, have been

analyzed from a proof-theoretical point of view, using ordinal notations,

etc. This proof-theoretic connection provides additional information

which is not provided by computable analysis or degrees of unsolvability.
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4. ALGORITHMIC RANDOMNESS.

Definitions (Martin-Löf, 1966). A set U ⊆ [0,1] is effectively open

if it is of the form U = [0,1] ∩ ⋃∞
i=1(ai, bi) where (ai, bi), i = 1,2,3, . . .,

is a computable sequence of rational open intervals. The complement

[0,1] \ U = [0,1] \ ⋃∞
i=1(ai, bi) is said to be effectively closed.

A set S ⊆ [0,1] is said to be effectively null or effectively of measure 0

if S ⊆ ⋂∞
n=1Un = [0,1] ∩ ⋂∞

n=1

⋃∞
i=1(ani, bni) where (ani, bni),

n, i = 1,2,3, . . ., is a computable double sequence of rational open

intervals, and each of the effectively open sets Un = [0,1]∩⋃∞
i=1(ani, bni)

is of measure ≤ 1/2n.

A point x ∈ [0,1] is random if x /∈ S for all effectively null sets S.

Theorem (Martin-Löf). There is a universal effectively null set.

In other words, the union of all effectively null sets is effectively null.

Corollary. Almost all points x ∈ [0,1] are random. In fact, there exist

effectively closed sets P = [0,1] \ ⋃∞
i=0(ai, bi) of measure arbitrarily close

to 1 such that every point x ∈ P is random in the sense of Martin-Löf.

Proof. Let P = Pn = [0,1] \ Un where S =
⋂∞
n=1Un is univ. eff. null.
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Recall that Ew is the lattice of weak degrees of

nonempty effectively closed sets in [0,1].

Remark. In our picture of Ew, r1 is the weak degree of the set

MLR = {x ∈ [0,1] | x is random in the sense of Martin-Löf}.
In fact, most of the specific, named degrees in Ew are

in some way related to algorithmic randomness.

Remarkably, the only known exceptions are 0 and 1.

Remark. In our computable counterexample to Heine/Borel,

we constructed an effectively closed set P ⊆ [0,1]

which is of positive measure yet contains no computable point.

Kučera has shown that the weak degree of any such set is ≤ r1.

Remark. There is a subsystem of Z2 called WWKL0 which arises

in the reverse mathematics of measure theory. WWKL0 is strictly

intermediate between RCA0 and WKL0. WWKL0 is equivalent

over RCA0 to the assertion that Heine/Borel holds for sequences

of open intervals (ai, bi), i = 1,2,3, . . . such that
∞∑

i=1

|ai − bi| < 1.
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Note. Ew is the lattice of weak degrees

of nonempty, effectively closed subsets of [0,1].
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We now explain some degrees in Ew. If P is any mass problem, let

degw(P) denote the weak degree of P .

The top degree in Ew is 1 = degw(CPA) where CPA is the problem of

finding a complete consistent theory which includes Peano arithmetic

(or ZFC, etc.).

We also have inf(a, 1) ∈ Ew where a is any recursively enumerable Turing

degree. Moreover, a < b implies inf(a, 1) < inf(b, 1)

We have r1 ∈ Ew where r1 = degw(MLR), where MLR = {x ∈ [0,1] | x is

Martin-Löf random}).

We also have inf(r2, 1) ∈ Ew where r2 = degw({x ∈ [0,1] | x is

2-random}), i.e., Martin-Löf random relative to the halting problem.

Also d ∈ Ew where d = degw({f | f is diagonally nonrecursive}), i.e.,

∀n (f(n) 6= ϕn(n)).
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Let REC = {g ∈ NN | g is recursive}. Let C be any “nice” subclass of

REC. For instance C = REC, or C = {g ∈ REC | g is primitive

recursive}. We have dC ∈ Ew where dC = degw({f ∈ NN | f is diagonally

nonrecursive and C-bounded}), i.e., (∃g ∈ C) ∀n (f(n) < g(n)).

Also, dC = degw({x ∈ {0,1}∞ | x is C-complex}, i.e.,

(∃g ∈ C)∀n (K(x↾{1, . . . , g(n)}) ≥ n)}) where K denotes prefix-free

Kolmogorov complexity. Moreover, dC′ < dC whenever C′ contains a

function which dominates all functions in C.

For x ∈ {0,1}∞ let effdim(x) = the effective Hausdorff dimension of x,

i.e., effdim(x) = lim inf
n→∞

K(x↾{1, . . . , n})
n

. Given a right recursively

enumerable real number s < 1, we have ks ∈ Ew where

ks = degw({x ∈ {0,1}N | effdim(x) > s}). Moreover, s < t implies ks < kt

(Joseph S. Miller).
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More generally, let g : N → [−∞,∞) be an unbounded computable

function such that g(n) ≤ g(n+1) ≤ g(n) + 1 for all n. For example,

g(n) could be n/2 or n/3 or
√
n or 3

√
n or logn or logn+ log logn or

log logn or the inverse Ackermann function. Define

kg = degw({x ∈ {0,1}∞ | x is g-random}), i.e.,

∃c∀n (K(x↾{1, . . . , n} ≥ g(n)− c).

Theorem (W. M. P. Hudelson, 2010). kg < kh provided

g(n) + 2 log g(n) ≤ h(n) for all n. In other words, there exists a

g-random real with no h-random real Turing reducible to it. This is a

generalization of Miller’s result.
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Letting z be a Turing oracle, define MLRz = {x ∈ [0,1] | x is random

relative to z} and Kz(τ) = the prefix-free Kolmogorov complexity of τ

relative to z. Define y ≤LR z ⇐⇒ MLRz ⊆ MLRy and

y ≤LK z ⇐⇒ ∃c∀τ (Kz(τ) ≤ Ky(τ) + c).

Theorem (Miller/Kjos-Hanssen/Solomon). We have

y ≤LR z ⇐⇒ y ≤LK z.

For each recursive ordinal number α, let 0(α) = the αth iterated Turing

jump of 0. Thus 0(1) = the halting problem, and 0(α+1) = the halting

problem relative to 0(α), etc. This is the hyperarithmetical hierarchy.

We embed it naturally into Ew as follows.

Theorem (Simpson 2009). 0(α) ≤LR z ⇐⇒ every Σ0
α+2 set includes a

Σ
0,z
2 set of the same measure. Moreover, letting

bα = degw({z | 0(α) ≤LR z}) we have inf(bα, 1) ∈ Ew and

inf(bα, 1) < inf(bα+1, 1).
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Thank you for your attention!

Stephen G. Simpson, Pennsylvania State University

http://www.math.psu.edu/simpson/

simpson@math.psu.edu
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