Reverse Mathematics and Π^1_2 Comprehension

Stephen G. Simpson Department of Mathematics Pennsylvania State University http://www.math.psu.edu/simpson/

January 17, 2007

Note: This is an abstract of an invited 50-minute talk, to be given January 21, 2007 at the Massachusetts Institute of Technology, as part of a conference in honor of Richard Shore's 60th birthday.

Abstract

This is joint work with Carl Mummert. We initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π_2^1 comprehension. If P is a poset, let MF(P) be the space of maximal filters on P. Here MF(P) has the obvious topology generated by basic open sets $N_p = \{F \in MF(P) \mid p \in F\}, p \in P$. An MF space is defined to be a topological space of the form MF(P). If P is countable, we say that MF(P)is countably based. The class of countably based MF spaces can be defined and discussed within the subsystem ACA₀ of second-order arithmetic. One can prove within ACA₀ that every complete separable metric space is regular and is homeomorphic to a countably based MF space. We show that the converse statement, "every regular, countably based MF space is homeomorphic to a complete separable metric space," is equivalent to Π_2^1 -CA₀. The equivalence is proved in the weaker system Π_1^1 -CA₀. This is the first example of a theorem of core mathematics which is provable in second-order arithmetic and implies Π_2^1 comprehension.