Muchnik and Medvedev Degrees of Π_{1}^{0} Subsets of 2^{ω}

Stephen G. Simpson

Pennsylvania State University

 http://www.math.psu.edu/simpson/simpson@math.psu.edu

University of Lisbon
July 19, 2001

Outline of talk:

1. The Gödel Hierarchy.
2. Reverse Mathematics and $W_{K L}$.
3. Forcing with Π_{1}^{0} subsets of 2^{ω}.
4. A symmetric ω-model of $W_{K L}$.
5. A symmetric β-model.
6. Muchnik and Medvedev degrees of Π_{1}^{0} sets.
7. Structural (lattice-theoretic) results.
8. Some specific Muchnik and Medvedev degrees
9. Some classes of Muchnik degrees.
10. References.

The Gödel Hierarchy:

(WKL_{0} (weak König's lemma) RCA A_{0} (recursive comprehension) PRA (primitive recursive arithmetic)
EFA (elementary arithmetic) bounded arithmetic

Reverse Mathematics:

Let τ be a mathematical theorem. Let S_{τ} be the weakest natural subsystem of second order arithmetic in which τ is provable.

1. Very often, the principal axiom of S_{τ} is logically equivalent to τ.
2. Furthermore, only a few subsystems of second order arithmetic arise in this way.

This classification program provides an interesting picture of the logical structure of contemporary mathematics.

It is a contribution to
foundations of mathematics (f.o.m.).

Books on Reverse Mathematics:
1.

Stephen G. Simpson
Subsystems of Second Order Arithmetic Perspectives in Mathematical Logic
Springer-Verlag, 1999
XIV +445 pages
http://www.math.psu.edu/simpson/sosoa/
2.
S. G. Simpson (editor)

Reverse Mathematics 2001
A volume of papers by various authors, to appear in 2001, approximately 400 pages.
http://www.math.psu.edu/simpson/revmath/

An important system:

One of the most important systems for Reverse Mathematics is $W K L_{0}$.
$W K L_{0}$ is a subsystem of second order arithmetic.
$W K L_{0}$ includes Δ_{1}^{0} comprehension
(i.e., closure under Turing reducibility)
and Weak König's Lemma:
(i.e., every infinite subtree of the full binary tree has an infinite path).

Remarks on ω-models of $W K L_{0}$:

1. The ω-model

$$
\text { REC }=\{X \subseteq \omega: X \text { is recursive }\}
$$

is not an ω-model of $W_{K L}$. (Kleene)
2. However, REC is the intersection of all ω-models of WKL_{0}. (Kreisel, "hard core")

Remarks on ω-models of $W_{K L}$ (continued):
3. The ω-models of $W_{K L}$ are just the Scott systems, i.e., $M \subseteq P(\omega)$ such that
(a) $M \neq \emptyset$.
(b) $X, Y \in M$ implies $X \oplus Y \in M$.
(c) $X \in M, Y \leq_{T} X$ imply $Y \in M$.
(d) If $T \in M$ is an infinite subtree of $2^{<\omega}$, then there exists $X \in M$ such that X is a path through T.

Dana Scott, Algebras of sets binumerable in complete extensions of arithmetic, Recursive Function Theory, AMS, 1962, pages 117-121.

Remarks on ω-models of $W_{K L}$ (continued):
4. There is a close relationship between
(a) ω-models of WKL_{0}, and
(b) Π_{1}^{0} subsets of 2^{ω}.

The recursion-theoretic literature is extensive, with numerous articles by Jockusch, Kučera, and others. A recent survey is:

Douglas Cenzer and Jeffrey B. Remmel, Π_{1}^{0} classes in mathematics, Handbook of Recursive Mathematics, North-Holland, 1998, pages 623-821.

An interesting ω-model of $W_{K L}$:

Let \mathcal{P} be the nonempty Π_{1}^{0} subsets of 2^{ω}, ordered by inclusion. Forcing with \mathcal{P} is known as Jockusch/Soare forcing.

Lemma (Simpson 2000). Let X be J/S generic. Suppose $Y \leq_{T} X$. Then (i) Y is J/S generic, and (ii) X is J / S generic relative to Y.

Theorem (Simpson 2000). There is an ω model M of $W_{K L}$ with the following property: For all $X, Y \in M, X$ is definable from Y in M if and only if X is Turing reducible to Y.

Proof. M is obtained by iterated J / S forcing. We have

$$
M=\operatorname{REC}\left[X_{1}, X_{2}, \ldots, X_{n}, \ldots\right]
$$

where, for all n, X_{n+1} is J / S generic over $\operatorname{REC}\left[X_{1}, \ldots, X_{n}\right]$. To show that M has the desired property, we use symmetry arguments based on the Recursion Theorem.

Foundational significance of M :

The above ω-model, M, represents a compromise between the conflicting needs of
(a) recursive mathematics ("everything is computable")
and
(b) classical rigorous mathematics as developed in $W_{K L}$ ("every continuous real-valued function on $[0,1]$ attains a maximum", "every countable commutative ring has a prime ideal", etc etc).

Namely, M contains enough nonrecursive objects for $W_{K L}$ to hold, yet the recursive objects form the "definable core" of M.

Foundational significance (continued):
More generally, consider the scheme
(*) For all X and Y, if X is definable from Y then X is recursive in Y
in the language of second order arithmetic.
Often in mathematics, under some assumptions on a given countably coded object X, there exists a unique countably coded object Y having some property stated in terms of X. In this situation, $(*)$ implies that Y is Turing computable from X. This is of obvious f.o.m. significance.

Simpson 2000 shows that, for every countable model of $W_{K} L_{0}$, there exists a countable model of $\mathrm{WKL}_{0}+(*)$ with the same first order part.

Thus $W_{K L}+(*)$ is conservative over $W K L_{0}$ for first order arithmetical sentences.

A Π_{1}^{0} set of ω-models of $W K L_{0}$:

Theorem (Simpson 2000). There is a nonempty Π_{1}^{0} subset of $2^{\omega}, P$, such that:

1. For all $X \in P,\left\{(X)_{n}: n \in \omega\right\}$ is a countable ω-model of $W_{K L}$, and every countable ω model of $W_{K L}$ occurs in this way.
2. For all nonempty Π_{1}^{0} sets $P_{1}, P_{2} \subseteq P$ we can find a recursive homeomorphism

$$
F: P_{1} \cong P_{2}
$$

such that for all $X \in P_{1}$ and $Y \in P_{2}$, if $F(X)=Y$ then

$$
\left\{(X)_{n}: n \in \omega\right\}=\left\{(Y)_{n}: n \in \omega\right\}
$$

The proof uses an idea of Pour-El/Kripke 1967.

Hyperarithmetical analogs:

Theorem (Simpson 2000). There is a countable β-model M such that, for all $X, Y \in M$, X is definable from Y in M if and only if X is hyperarithmetical in Y.

In the language of second order arithmetic, consider the scheme
(**) for all X, Y, if X is definable from Y, then X is hyperarithmetical in Y.

Theorem (Simpson 2000).

1. $\operatorname{ATR}_{0}+(* *)$ is conservative over ATR $_{0}$ for Σ_{2}^{1} sentences.
2. $\Pi_{\infty}^{1}-\mathrm{TI}_{0}+(* *)$ is conservative over $\Pi_{\infty}^{1}-\mathrm{TI}_{0}$ for Σ_{2}^{1} sentences.

Two new structures in recursion theory:

Recall that \mathcal{P} is the set of nonempty Π_{1}^{0} subsets of 2^{ω}.
$\mathcal{P}_{w}\left(\mathcal{P}_{M}\right)$ consists of the Muchnik (Medvedev) degrees of members of \mathcal{P}, ordered by Muchnik (Medvedev) reducibility.
P is Muchnik reducible to $Q\left(P \leq_{w} Q\right)$ if for all $Y \in Q$ there exists $X \in P$ such that $X \leq_{T} Y$.
P is Medvedev reducible to $Q\left(P \leq_{M} Q\right)$ if there exists a recursive functional $F: Q \rightarrow P$.

Note: \leq_{M} is a uniform version of \leq_{w}.
\mathcal{P}_{w} and \mathcal{P}_{M} are countable distributive lattices with 0 and 1.

The lattice operations are given by

$$
\begin{gathered}
P \times Q=\{X \oplus Y: X \in P, Y \in Q\} \\
\quad(\text { least upper bound) }
\end{gathered}
$$

$$
P+Q=\{\langle 0\rangle \subset X: X \in P\} \cup\{\langle 1\rangle \frown Y: Y \in Q\}
$$

(greatest lower bound).
$P \equiv 0$ in \mathcal{P}_{w} if and only if $P \cap$ REC $\neq \emptyset$.
$P \equiv 0$ in \mathcal{P}_{M} if and only if $P \cap \operatorname{REC} \neq \emptyset$.
$P \equiv 1$ in \mathcal{P}_{w}, i.e., P is Muchnik complete, if and only if the Turing degrees of members of P are exactly the Turing degrees of complete extensions of PA. (Simpson 2001)
$P \equiv 1$ in \mathcal{P}_{M}, i.e., P is Medvedev complete, if and only if P is recursively homeomorphic to the set of complete extensions of PA.
(Simpson 2000)

Connection with Lindenbaum algebras:

Stone duality gives a 1-1 correspondence

$$
P \longleftrightarrow B_{P}
$$

between members of \mathcal{P} (i.e., nonempty Π_{1}^{0} subsets of 2^{ω}) and Lindenbaum sentence algebras of r.e. theories (i.e., Boolean algebras of the form B / I, where B is the countable free Boolean algebra, and I is an r.e. ideal in B).

Moreover, this correspondence is functorial.

Namely, recursive functionals $F: Q \rightarrow P$ (i.e., Medvedev reductions) correspond to recursive homomorphisms $B_{F}: B_{P} \rightarrow B_{Q}$.

This provides an alternative way to view Medvedev reducibility: $P \leq_{M} Q$ if and only if there exists a recursive homomorphism $f: B_{P} \rightarrow B_{Q}$.

Structural (lattice-theoretic) results:

Trivially $P, Q>0$ implies $P+Q>0$, but we do not know whether $P, Q<1$ implies $P \times Q<1$.

In \mathcal{P}_{w}, for every $P>0$, every countable distributive lattice is lattice embeddable below P. For \mathcal{P}_{M} we have partial results in this direction.

To construct our lattice embeddings, we use infinitary "almost lattice" operations, defined in such a way that, if $\left\langle P_{i}: i \in \omega\right\rangle$ is a recursive sequence of members of \mathcal{P}, then

$$
\prod_{i=0}^{\infty} P_{i} \quad \text { and } \quad \sum_{i=0}^{\infty} P_{i}
$$

are again members of \mathcal{P}. We also use a finite injury priority argument a la Martin/Pour-El 1970 and Jockusch/Soare 1972. To push the embeddings below P, we use a Sacks preservation strategy.

This is ongoing joint work with my Ph. D. student Stephen Binns.

Structural results (continued):

Corollary. In \mathcal{P}_{w}, for all $P>_{w} 0$ there exists Q such that $P>{ }_{w} Q>_{w} 0$.
(nonexistence of minimal Muchnik degrees)

Corollary. In \mathcal{P}_{M}, for all $P>_{M} 0$ there exists Q such that $P>_{M} Q>_{M} 0$.
(nonexistence of minimal Medvedev degrees)

The last corollary was also obtained by Douglas Cenzer and Peter Hinman, using a different method: index sets.

Problem area:

Study structural properties of the countable distributive lattices \mathcal{P}_{w} and \mathcal{P}_{M}. Lattice embeddings, extensions of embeddings, quotient lattices, cupping and capping, automorphisms, definability, decidability, etc.

An invidious comparison:

In some ways, the study of \mathcal{P}_{w} and \mathcal{P}_{M} parallels the study of \mathcal{R}_{T}, the Turing degrees of recursively enumerable subsets of ω.

Analogy: $\quad \frac{\mathcal{P}_{w}}{\mathcal{R}_{T}}=\frac{\mathrm{WKL}_{0}}{\mathrm{ACA}_{0}}$
A regrettable aspect of \mathcal{R}_{T} is that there are no specific known examples of recursively enumerable Turing degrees $\neq 0,0^{\prime}$. (See the extensive FOM discussion of July 1999, in the aftermath of the Boulder meeting.)

In this respect, \mathcal{P}_{w} and \mathcal{P}_{M} are much better.

Invidious comparison (continued):

For example, we have:
Theorem. The set of Muchnik degrees of Π_{1}^{0} subsets of 2^{ω} of positive measure contains a maximum degree. This particular Muchnik degree is $\neq 0,1$. (Simpson 2001)

The theorem follows from three known results.

1. $\{X: X$ is 1-random $\}$ is Σ_{2}^{0} and of measure one. (Martin-Löf 1966)
2. $\left\{X: \exists Y \leq_{T} X\right.$ (Y separates a recursively inseparable pair of r.e. sets) $\}$ is of measure zero. (Jockusch/Soare 1972)
3. If $P \in \mathcal{P}$ is of positive measure, then for all 1-random X there exists k such that $X^{(k)}=$ $\lambda n . X(n+k) \in P$. (Kučera 1985)

Unfortunately, the theorem does not hold for Medvedev degrees (Simpson/Slaman 2001).

A related but apparently new result:
Theorem (Simpson 2000). If X is 1-random and hyperimmune-free, then no $Y \leq_{T} X$ separates a recursively inseparable pair of r.e. sets.

Other related results:

1. If X is 1 -random and of r.e. Turing degree, then X is Turing complete. (Kučera 1985)
2. $\{X: X$ is hyperimmune-free $\}$ is of measure zero. (Martin 1967, unpublished)

Foundational significance:
All of these results are informative with respect to ω-models of $W W K L_{0}$. $W W K L_{0}$ is a subsystem of second order arithmetic which arises in the Reverse Mathematics of measure theory. (Yu/Simpson 1990)

Some specific Medvedev degrees $\neq 0,1$:

For $k \geq 2$ let DNR_{k} be the set of k-valued DNR functions. Each DNR_{k} is recursively homeomorphic to a member of \mathcal{P}. DNR_{2} is Medvedev complete. In \mathcal{P}_{M} we have
$\mathrm{DNR}_{2}>_{M} \mathrm{DNR}_{3}>_{M} \cdots>_{M} \sum_{k=2}^{\infty} \mathrm{DNR}_{k}$.
All of these Medvedev degrees are Muchnik complete. (Jockusch 1989)

Problem area:

Find additional natural examples of Medvedev and Muchnik degrees $\neq 0,1$.

Experience suggests that natural examples could be of significance for f.o.m.

A related problem of Reverse Mathematics:

Let $\operatorname{DNR}(k)$ be the statement that for all X there exists a k-valued DNR function relative to X. It is known that, for each $k \geq 2, \operatorname{DNR}(k)$ is equivalent to Weak König's Lemma over RCA_{0}. Is $\exists k(k \geq 2 \wedge \operatorname{DNR}(k))$ equivalent to Weak König's Lemma over RCA ${ }_{0}$?

This has a bearing on graph coloring problems in Reverse Mathematics. See two recent papers of James H. Schmerl, to appear in MLQ and Reverse Mathematics 2001.

Another problem area:

One may study properties of interesting subsets of \mathcal{P}_{w} and \mathcal{P}_{M}. For example, we may consider Muchnik and Medvedev degrees of $P \in \mathcal{P}$ with the following special properties:

1. P is of positive measure.
2. P is thin, i.e., for all Π_{1}^{0} sets $Q \subseteq P$ there exists a clopen set $U \subseteq 2^{\omega}$ such that $P \cap U=Q$. (See also the recent paper of Cholak/Coles/Downey/Herrmann.)
3. P is separating, i.e.,

$$
P=\left\{X \in 2^{\omega}: X \text { separates } A, B\right\}
$$

where A, B is a disjoint pair of r.e. sets.

These classes of Muchnik and Medvedev degrees are related in interesting ways.

Theorem (Simpson 2001). Let $P \in \mathcal{P}$ be of positive measure of maximum Muchnik degree. Let $Q \in \mathcal{P}$ be thin and $\not \equiv_{w} 0$. Then P and Q are Muchnik incomparable, i.e., $P \not \mathbb{Z}_{w} Q$ and $Q \not \mathbb{Z}_{w} P$.

Theorem (Simpson 2001). Let P be as above. Then P is non-branching in \mathcal{P}_{w}. I.e., there do not exist $P_{1}, P_{2}>_{w} P$ such that $P \equiv_{w} P_{1}+P_{2}$, the infimum of P_{1} and P_{2}.

Theorem (Simpson 2001). Let $P, Q, S \in \mathcal{P}$ with P as above and S separating. If $S \leq_{w} P \times Q$, then $S \leq_{w} Q$.

Corollary. Let P be as above. Then P does not join to 1 in \mathcal{P}_{w}. I.e., for all $Q \in \mathcal{P}$, if Q is Muchnik incomplete, then so is $P \times Q$, the supremum of P and Q.

A lemma used in proving these results:
Lemma. If $P, Q \in \mathcal{P}$ and $P \leq_{w} Q$, then there exists $R \subseteq Q, R \in \mathcal{P}$, such that $P \leq_{M} R$.

A picture of the Muchnik lattice \mathcal{P}_{w} :
maximum of positive measure

References:

Stephen G. Simpson, Kazuyuki Tanaka, and Takeshi Yamazaki, Some conservation results on weak König's Iemma, preprint, February 2000, 26 pages, to appear in APAL.

Stephen G. Simpson, Π_{1}^{0} sets and models of $W_{K L}$, preprint, April 2000, 28 pages, to appear in Reverse Mathematics 2001.

Stephen G. Simpson, A symmetric β-model, preprint, May 2000, 7 pages, to appear.

Stephen Binns and Stephen G. Simpson, Medvedev and Muchnik degrees of Π_{1}^{0} subsets of 2^{ω}, in preparation.

Stephen G. Simpson, Some examples of Muchnik degrees of Π_{1}^{0} subsets of 2^{ω}, in preparation.

Some of my papers are available at http://www.math.psu.edu/simpson/papers/.

Transparencies for my talks are available at http://www.math.psu.edu/simpson/talks/.

