Muchnik and Medvedev Degrees of Π_1^0 Subsets of 2^{ω}

Stephen G. Simpson

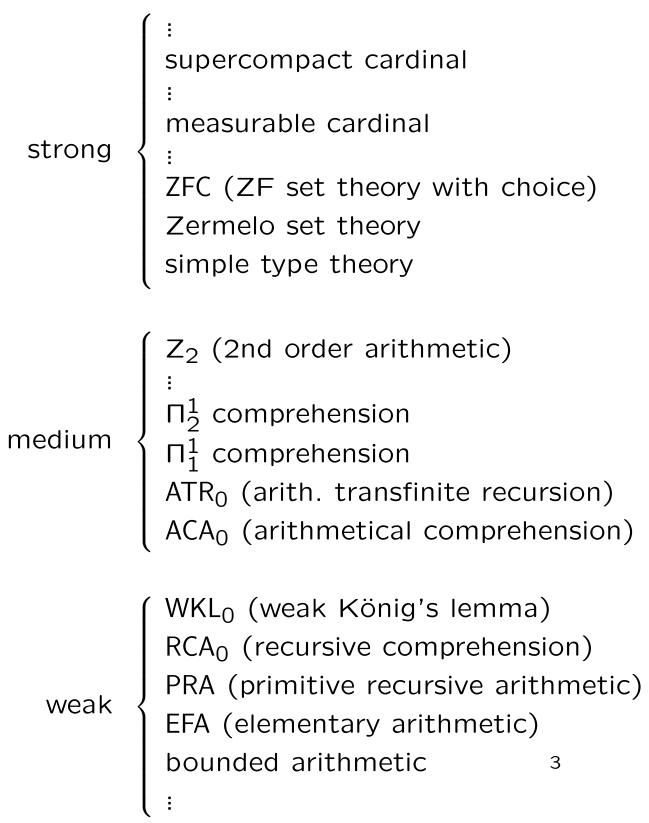
Pennsylvania State University http://www.math.psu.edu/simpson/ simpson@math.psu.edu

> University of Lisbon July 19, 2001

Outline of talk:

- 1. The Gödel Hierarchy.
- 2. Reverse Mathematics and WKL_0 .
- 3. Forcing with Π_1^0 subsets of 2^{ω} .
- 4. A symmetric ω -model of WKL₀.
- 5. A symmetric β -model.
- 6. Muchnik and Medvedev degrees of Π_1^0 sets.
- 7. Structural (lattice-theoretic) results.
- 8. Some specific Muchnik and Medvedev degrees
- 9. Some classes of Muchnik degrees.
- 10. References.

The Gödel Hierarchy:



Reverse Mathematics:

Let τ be a mathematical theorem. Let S_{τ} be the weakest natural subsystem of second order arithmetic in which τ is provable.

- 1. Very often, the principal axiom of S_{τ} is logically equivalent to τ .
- 2. Furthermore, only a few subsystems of second order arithmetic arise in this way.

This classification program provides an interesting picture of the logical structure of contemporary mathematics.

It is a contribution to foundations of mathematics (f.o.m.).

Books on Reverse Mathematics:

1.

Stephen G. Simpson Subsystems of Second Order Arithmetic Perspectives in Mathematical Logic Springer-Verlag, 1999 XIV + 445 pages

http://www.math.psu.edu/simpson/sosoa/

2.

S. G. Simpson (editor) *Reverse Mathematics 2001*

A volume of papers by various authors, to appear in 2001, approximately 400 pages.

http://www.math.psu.edu/simpson/revmath/

An important system:

One of the most important systems for Reverse Mathematics is WKL_0 .

 WKL_0 is a subsystem of second order arithmetic.

WKL₀ includes Δ_1^0 comprehension (i.e., closure under Turing reducibility) and Weak König's Lemma: (i.e., every infinite subtree of the full binary tree has an infinite path).

Remarks on ω -models of WKL₀:

1. The ω -model

 $\mathsf{REC} = \{X \subseteq \omega : X \text{ is recursive}\}$ is not an ω -model of WKL_0 . (Kleene)

2. However, REC is the intersection of all ω -models of WKL₀. (Kreisel, "hard core")

Remarks on ω -models of WKL₀ (continued):

3. The ω -models of WKL₀ are just the *Scott* systems, i.e., $M \subseteq P(\omega)$ such that

(a) $M \neq \emptyset$.

(b) $X, Y \in M$ implies $X \oplus Y \in M$.

(c) $X \in M$, $Y \leq_T X$ imply $Y \in M$.

(d) If $T \in M$ is an infinite subtree of $2^{<\omega}$, then there exists $X \in M$ such that X is a path through T.

Dana Scott, Algebras of sets binumerable in complete extensions of arithmetic, *Recursive Function Theory*, AMS, 1962, pages 117–121.

Remarks on ω -models of WKL₀ (continued):

- 4. There is a close relationship between
- (a) ω -models of WKL₀, and
- (b) Π_1^0 subsets of 2^{ω} .

The recursion-theoretic literature is extensive, with numerous articles by Jockusch, Kučera, and others. A recent survey is:

Douglas Cenzer and Jeffrey B. Remmel, Π_1^0 classes in mathematics, *Handbook of Recursive Mathematics*, North-Holland, 1998, pages 623–821.

An interesting ω -model of WKL₀:

Let \mathcal{P} be the nonempty Π_1^0 subsets of 2^{ω} , ordered by inclusion. Forcing with \mathcal{P} is known as Jockusch/Soare forcing.

Lemma (Simpson 2000). Let X be J/S generic. Suppose $Y \leq_T X$. Then (i) Y is J/S generic, and (ii) X is J/S generic relative to Y.

Theorem (Simpson 2000). There is an ω model M of WKL₀ with the following property: For all $X, Y \in M$, X is definable from Y in Mif and only if X is Turing reducible to Y.

Proof. M is obtained by iterated ${\rm J/S}$ forcing. We have

$M = \mathsf{REC}[X_1, X_2, \dots, X_n, \dots]$

where, for all n, X_{n+1} is J/S generic over $REC[X_1, \ldots, X_n]$. To show that M has the desired property, we use symmetry arguments based on the Recursion Theorem.

Foundational significance of *M*:

The above ω -model, M, represents a compromise between the conflicting needs of

(a) recursive mathematics ("everything is computable")

and

(b) classical rigorous mathematics as developed in WKL_0 ("every continuous real-valued function on [0,1] attains a maximum", "every countable commutative ring has a prime ideal", etc etc).

Namely, M contains enough nonrecursive objects for WKL₀ to hold, yet the recursive objects form the "definable core" of M.

Foundational significance (continued):

More generally, consider the scheme

(*) For all X and Y, if X is definable from Y then X is recursive in Y

in the language of second order arithmetic.

Often in mathematics, under some assumptions on a given countably coded object X, there exists a unique countably coded object Y having some property stated in terms of X. In this situation, (*) implies that Y is Turing computable from X. This is of obvious f.o.m. significance.

Simpson 2000 shows that, for every countable model of WKL₀, there exists a countable model of WKL₀ + (*) with the same first order part.

Thus $WKL_0 + (*)$ is conservative over WKL_0 for first order arithmetical sentences.

A Π_1^0 set of ω -models of WKL₀:

Theorem (Simpson 2000). There is a nonempty Π_1^0 subset of 2^{ω} , *P*, such that:

- 1. For all $X \in P$, $\{(X)_n : n \in \omega\}$ is a countable ω -model of WKL₀, and every countable ω -model of WKL₀ occurs in this way.
- 2. For all nonempty Π_1^0 sets $P_1, P_2 \subseteq P$ we can find a recursive homeomorphism

$$F: P_1 \cong P_2$$

such that for all $X \in P_1$ and $Y \in P_2$, if F(X) = Y then

$$\{(X)_n : n \in \omega\} = \{(Y)_n : n \in \omega\}.$$

The proof uses an idea of Pour-El/Kripke 1967.

Hyperarithmetical analogs:

Theorem (Simpson 2000). There is a countable β -model M such that, for all $X, Y \in M$, X is definable from Y in M if and only if X is hyperarithmetical in Y.

In the language of second order arithmetic, consider the scheme

(**) for all X, Y, if X is definable from Y, then X is hyperarithmetical in Y.

Theorem (Simpson 2000).

- 1. $ATR_0 + (**)$ is conservative over ATR_0 for Σ_2^1 sentences.
- 2. Π_{∞}^{1} -Tl₀ + (**) is conservative over Π_{∞}^{1} -Tl₀ for Σ_{2}^{1} sentences.

Two new structures in recursion theory:

Recall that \mathcal{P} is the set of nonempty Π_1^0 subsets of 2^{ω} .

 \mathcal{P}_w (\mathcal{P}_M) consists of the Muchnik (Medvedev) degrees of members of \mathcal{P} , ordered by Muchnik (Medvedev) reducibility.

P is Muchnik reducible to Q ($P \leq_w Q$) if for all $Y \in Q$ there exists $X \in P$ such that $X \leq_T Y$.

P is Medvedev reducible to Q ($P \leq_M Q$) if there exists a recursive functional $F : Q \rightarrow P$.

Note: \leq_M is a uniform version of \leq_w .

 \mathcal{P}_w and \mathcal{P}_M are countable distributive lattices with 0 and 1.

The lattice operations are given by

$$P \times Q = \{X \oplus Y : X \in P, Y \in Q\}$$

(least upper bound)

 $P + Q = \{ \langle 0 \rangle^{\frown} X : X \in P \} \cup \{ \langle 1 \rangle^{\frown} Y : Y \in Q \}$ (greatest lower bound).

 $P \equiv 0$ in \mathcal{P}_w if and only if $P \cap \mathsf{REC} \neq \emptyset$.

 $P \equiv 0$ in \mathcal{P}_M if and only if $P \cap \mathsf{REC} \neq \emptyset$.

 $P \equiv 1$ in \mathcal{P}_w , i.e., P is *Muchnik complete*, if and only if the Turing degrees of members of P are exactly the Turing degrees of complete extensions of PA. (Simpson 2001)

 $P \equiv 1$ in \mathcal{P}_M , i.e., P is *Medvedev complete*, if and only if P is recursively homeomorphic to the set of complete extensions of PA. (Simpson 2000)

Connection with Lindenbaum algebras:

Stone duality gives a 1-1 correspondence

 $P \longleftrightarrow B_P$

between members of \mathcal{P} (i.e., nonempty Π_1^0 subsets of 2^{ω}) and Lindenbaum sentence algebras of r.e. theories (i.e., Boolean algebras of the form B/I, where B is the countable free Boolean algebra, and I is an r.e. ideal in B).

Moreover, this correspondence is *functorial*.

Namely, recursive functionals $F : Q \to P$ (i.e., Medvedev reductions) correspond to recursive homomorphisms $B_F : B_P \to B_Q$.

This provides an alternative way to view Medvedev reducibility: $P \leq_M Q$ if and only if there exists a recursive homomorphism $f : B_P \to B_Q$.

Structural (lattice-theoretic) results:

Trivially P, Q > 0 implies P + Q > 0, but we do not know whether P, Q < 1 implies $P \times Q < 1$.

In \mathcal{P}_w , for every P > 0, every countable distributive lattice is lattice embeddable below P. For \mathcal{P}_M we have partial results in this direction.

To construct our lattice embeddings, we use infinitary "almost lattice" operations, defined in such a way that, if $\langle P_i : i \in \omega \rangle$ is a recursive sequence of members of \mathcal{P} , then

 $\prod_{i=0}^{\infty} P_i \quad \text{and} \quad \sum_{i=0}^{\infty} P_i$

are again members of \mathcal{P} . We also use a finite injury priority argument a Ia Martin/Pour-El 1970 and Jockusch/Soare 1972. To push the embeddings below P, we use a Sacks preservation strategy.

This is ongoing joint work with my Ph. D. student Stephen Binns.

Structural results (continued):

Corollary. In \mathcal{P}_w , for all $P >_w 0$ there exists Q such that $P >_w Q >_w 0$. (nonexistence of minimal Muchnik degrees)

Corollary. In \mathcal{P}_M , for all $P >_M 0$ there exists Q such that $P >_M Q >_M 0$. (nonexistence of minimal Medvedev degrees)

The last corollary was also obtained by Douglas Cenzer and Peter Hinman, using a different method: index sets.

Problem area:

Study structural properties of the countable distributive lattices \mathcal{P}_w and \mathcal{P}_M . Lattice embeddings, extensions of embeddings, quotient lattices, cupping and capping, automorphisms, definability, decidability, etc.

An invidious comparison:

In some ways, the study of \mathcal{P}_w and \mathcal{P}_M parallels the study of \mathcal{R}_T , the Turing degrees of recursively enumerable subsets of ω .

Analogy:
$$\frac{\mathcal{P}_w}{\mathcal{R}_T} = \frac{WKL_0}{ACA_0}$$

A regrettable aspect of \mathcal{R}_T is that there are no specific known examples of recursively enumerable Turing degrees $\neq 0,0'$. (See the extensive FOM discussion of July 1999, in the aftermath of the Boulder meeting.)

In this respect, \mathcal{P}_w and \mathcal{P}_M are **much better**.

Invidious comparison (continued):

For example, we have:

Theorem. The set of Muchnik degrees of Π_1^0 subsets of 2^{ω} of positive measure contains a maximum degree. This particular Muchnik degree is $\neq 0, 1$. (Simpson 2001)

The theorem follows from three known results.

1. $\{X : X \text{ is } 1\text{-random}\}\$ is Σ_2^0 and of measure one. (Martin-Löf 1966)

2. $\{X : \exists Y \leq_T X (Y \text{ separates a recursively in-separable pair of r.e. sets})\}$ is of measure zero. (Jockusch/Soare 1972)

3. If $P \in \mathcal{P}$ is of positive measure, then for all 1-random X there exists k such that $X^{(k)} = \lambda n.X(n+k) \in P$. (Kučera 1985)

Unfortunately, the theorem does not hold for Medvedev degrees (Simpson/Slaman 2001).

A related but apparently new result:

Theorem (Simpson 2000). If X is 1-random and hyperimmune-free, then no $Y \leq_T X$ separates a recursively inseparable pair of r.e. sets.

Other related results:

- 1. If X is 1-random and of r.e. Turing degree, then X is Turing complete. (Kučera 1985)
- 2. $\{X : X \text{ is hyperimmune-free}\}\$ is of measure zero. (Martin 1967, unpublished)

Foundational significance:

All of these results are informative with respect to ω -models of WWKL₀. WWKL₀ is a subsystem of second order arithmetic which arises in the Reverse Mathematics of measure theory. (Yu/Simpson 1990) Some specific Medvedev degrees $\neq 0, 1$:

For $k \ge 2$ let DNR_k be the set of k-valued DNR functions. Each DNR_k is recursively homeomorphic to a member of \mathcal{P} . DNR_2 is Medvedev complete. In \mathcal{P}_M we have

$$\mathsf{DNR}_2 >_M \mathsf{DNR}_3 >_M \cdots >_M \sum_{k=2}^{\infty} \mathsf{DNR}_k$$

All of these Medvedev degrees are Muchnik complete. (Jockusch 1989)

Problem area:

Find additional natural examples of Medvedev and Muchnik degrees $\neq 0, 1$.

Experience suggests that natural examples could be of significance for f.o.m.

A related problem of Reverse Mathematics:

Let DNR(k) be the statement that for all Xthere exists a k-valued DNR function relative to X. It is known that, for each $k \ge 2$, DNR(k)is equivalent to Weak König's Lemma over RCA_0 . Is $\exists k \ (k \ge 2 \land DNR(k))$ equivalent to Weak König's Lemma over RCA_0 ?

This has a bearing on graph coloring problems in Reverse Mathematics. See two recent papers of James H. Schmerl, to appear in *MLQ* and *Reverse Mathematics 2001*.

Another problem area:

One may study properties of interesting subsets of \mathcal{P}_w and \mathcal{P}_M . For example, we may consider Muchnik and Medvedev degrees of $P \in \mathcal{P}$ with the following special properties:

1. P is of positive measure.

2. *P* is *thin*, i.e., for all Π_1^0 sets $Q \subseteq P$ there exists a clopen set $U \subseteq 2^\omega$ such that $P \cap U = Q$. (See also the recent paper of Cholak/Coles/Downey/Herrmann.)

3. P is separating, i.e.,

 $P = \{X \in 2^{\omega} : X \text{ separates } A, B\}$

where A, B is a disjoint pair of r.e. sets.

These classes of Muchnik and Medvedev degrees are related in interesting ways.

Theorem (Simpson 2001). Let $P \in \mathcal{P}$ be of positive measure of maximum Muchnik degree. Let $Q \in \mathcal{P}$ be thin and $\not\equiv_w 0$. Then P and Q are Muchnik incomparable, i.e., $P \not\leq_w Q$ and $Q \not\leq_w P$.

Theorem (Simpson 2001). Let P be as above. Then P is non-branching in \mathcal{P}_w . I.e., there do not exist $P_1, P_2 >_w P$ such that $P \equiv_w P_1 + P_2$, the infimum of P_1 and P_2 .

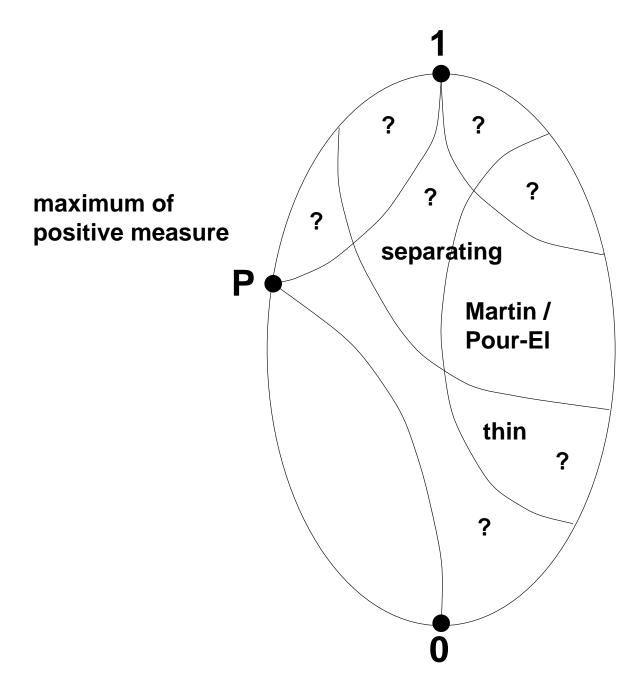
Theorem (Simpson 2001). Let $P, Q, S \in \mathcal{P}$ with P as above and S separating. If $S \leq_w P \times Q$, then $S \leq_w Q$.

Corollary. Let P be as above. Then P does not join to 1 in \mathcal{P}_w . I.e., for all $Q \in \mathcal{P}$, if Qis Muchnik incomplete, then so is $P \times Q$, the supremum of P and Q.

A lemma used in proving these results:

Lemma. If $P, Q \in \mathcal{P}$ and $P \leq_w Q$, then there exists $R \subseteq Q$, $R \in \mathcal{P}$, such that $P \leq_M R$.

A picture of the Muchnik lattice \mathcal{P}_w :



References:

Stephen G. Simpson, Kazuyuki Tanaka, and Takeshi Yamazaki, Some conservation results on weak König's lemma, preprint, February 2000, 26 pages, to appear in APAL.

Stephen G. Simpson, Π_1^0 sets and models of WKL₀, preprint, April 2000, 28 pages, to appear in *Reverse Mathematics 2001*.

Stephen G. Simpson, A symmetric β -model, preprint, May 2000, 7 pages, to appear.

Stephen Binns and Stephen G. Simpson, Medvedev and Muchnik degrees of Π_1^0 subsets of 2^{ω} , in preparation.

Stephen G. Simpson, Some examples of Muchnik degrees of Π_1^0 subsets of 2^{ω} , in preparation.

Some of my papers are available at http://www.math.psu.edu/simpson/papers/.

Transparencies for my talks are available at http://www.math.psu.edu/simpson/talks/.

THE END