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Hierarchy:

( -

supercompact cardinal
measurable cardinal

/FC (ZF set theory with choice)
Zermelo set theory
simple type theory

Z-> (2nd order arithmetic)

N comprehension

N} comprehension

ATRg (arith. transfinite recursion)
ACAq (arithmetical comprehension)

WKLy (weak Konig's lemma)

RCAqp (recursive comprehension)
PRA (primitive recursive arithmetic)
EFA (elementary arithmetic)
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Reverse Mathematics:

Let 7 be a mathematical theorem. Let S; be
the weakest natural subsystem of second order
arithmetic in which 7 is provable.

1. Very often, the principal axiom of S; is log-
ically equivalent to .

2. Furthermore, only a few subsystems of sec-
ond order arithmetic arise in this way.

This classification program provides
an interesting picture of the logical structure
of contemporary mathematics.

It is a contribution to
foundations of mathematics (f.o.m.).



Books on Reverse Mathematics:

Stephen G. Simpson

Subsystems of Second Order Arithmetic
Perspectives in Mathematical Logic
Springer-Verlag, 1999

XIV + 445 pages

http://www.math.psu.edu/simpson/sosoa/

2.

S. G. Simpson (editor)
Reverse Mathematics 2001

A volume of papers by various authors,
to appear in 2001,
approximately 400 pages.

http://www.math.psu.edu/simpson/revmath/
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An important system:

One of the most important systems
for Reverse Mathematics is WKLg.

WKLg is a subsystem of second order
arithmetic.

WKLg includes A9 comprehension

(i.e., closure under Turing reducibility)

and Weak Konig's Lemma:

(i.e., every infinite subtree of the full binary
tree has an infinite path).

Remarks on w-models of WKLg:

1. The w-model

REC = {X Cw: X is recursive}
is not an w-model of WKLg. (Kleene)

2. However, REC is the intersection of all
w-models of WKLy. (Kreisel, “hard core™)
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Remarks on w-models of WKLy (continued):

3. The w-models of WKLy are just the Scott
systems, i.e., M C P(w) such that

(a) M # 0.

(b) X, Y € M implies X®Y € M.

(c) XeM,Y<p X implyYeM.

(d) If T € M is an infinite subtree of 2<%, then
there exists X € M such that X is a path
through T

Dana Scott, Algebras of sets binumerable in
complete extensions of arithmetic, Recursive

Function Theory, AMS, 1962, pages 117—121.
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Remarks on w-models of WKLy (continued):

4. There is a close relationship between
(a) w-models of WKLg, and
(b) N9 subsets of 2.

The recursion-theoretic literature is extensive,
with numerous articles by Jockusch, Kucera,
and others. A recent survey is:

Douglas Cenzer and Jeffrey B. Remmel, M
classes in mathematics, Handbook of Recur-
sive Mathematics, North-Holland, 1998, pages
623—821.



An interesting w-model of WKLj:

Let P be the nonempty I‘Icl) subsets of 2%, or-
dered by inclusion. Forcing with P is known as
Jockusch/Soare forcing.

Lemma (Simpson 2000). Let X be J/S generic.
Suppose Y <7 X. Then (i) Y is J/S generic,
and (ii) X is J/S generic relative to Y.

Theorem (Simpson 2000). There is an w-
model M of WKLy with the following property:
For all X,Y € M, X is definable from Y in M
if and only if X is Turing reducible to Y.

Proof. M is obtained by iterated J/S forcing.
We have

M = REC[X1,Xo,...,Xn,...]

where, for all n, X, 41 is J/S generic over
REC[X,...,Xn]. To show that M has the
desired property, we use symmetry arguments
based on the Recursion Theorem.



Foundational significance of M:

The above w-model, M, represents a compro-
mise between the conflicting needs of

(a) recursive mathematics (“everything is com-
putable”)

and

(b) classical rigorous mathematics as devel-
oped in WKLy ("every continuous real-valued
function on [0, 1] attains a maximum’, ‘“ev-
ery countable commutative ring has a prime
ideal’”, etc etc).

Namely, M contains enough nonrecursive ob-
jects for WKL to hold, yet the recursive objects
form the ‘“definable core” of M.
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Foundational significance (continued):

More generally, consider the scheme

(*) For all X and Y, if X is definable
from Y then X is recursive in Y

in the language of second order arithmetic.

Often in mathematics, under some assump-
tions on a given countably coded object X,
there exists a unique countably coded object
Y having some property stated in terms of X.
In this situation, (*) implies that Y is Turing
computable from X. This is of obvious f.o.m.
significance.

Simpson 2000 shows that, for every countable
model of WKL, there exists a countable model
of WKLp 4+ (%) with the same first order part.

Thus WKLy + (%) is conservative over WKLy for
first order arithmetical sentences.
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A MY set of w-models of WKLg:

Theorem (Simpson 2000). There is a nonempty
N9 subset of 2«, P, such that:

1. Forall X € P, {(X)n : n €w} is a countable
w-model of WKLy, and every countable w-
model of WKLy occurs in this way.

2. For all nonempty MY sets Py, P, C P we can
find a recursive homeomorphism

FZP]_gPQ

such that for all X € P, and Y € P», if
F(X) =Y then

{(X)n:nmnewt={ Y)n:n€cw}.

The proof uses an idea of Pour-El/Kripke 1967.
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Hyperarithmetical analogs:

Theorem (Simpson 2000). There is a count-
able g-model M such that, for all X,Y € M,
X is definable from Y in M if and only if X is
hyperarithmetical in Y.

In the language of second order arithmetic,
consider the scheme

(**) for all X,Y, if X is definable from
Y, then X is hyperarithmetical in Y.

Theorem (Simpson 2000).

1. ATRp + (**) is conservative over ATRg
for =3 sentences.

2. ML -Tlg+ (xx) is conservative over N -Tlg
for =3 sentences.
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Two new structures in recursion theory:

Recall that P is the set of nonempty M¢ subsets
of 2%,

Pw (Pur) consists of the Muchnik (Medvedev)
degrees of members of P, ordered by Muchnik
(Medvedev) reducibility.

P is Muchnik reducible to QQ (P <y Q) if for all
Y € @ there exists X € P such that X <7 Y.

P is Medvedev reducible to Q (P <p; Q) if
there exists a recursive functional F': Q) — P.

Note: <,s is a uniform version of <y.
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Pw and Pp; are countable distributive lattices
with O and 1.

‘The lattice operations are given by
PxQ={Xe@eY:XePYcQ}
(least upper bound)
P+QQ={0"X:XecPlu{(1)Y Y cQ}
(greatest lower bound).

P =0 in Py if and only if PN REC # 0.
P =0 in Py, if and only if PN REC # 0.

P =1 in Py, i.e., P is Muchnik complete, if
and only if the Turing degrees of members of
P are exactly the Turing degrees of complete
extensions of PA. (Simpson 2001)

P=1in Py, i.e., Pis Medvedev complete, if
and only if P is recursively homeomorphic to
the set of complete extensions of PA.
(Simpson 2000)

15



Connection with Lindenbaum algebras:

Stone duality gives a 1-1 correspondence

P «—— Bp

between members of P (i.e., nonempty MN?
subsets of 2%“) and Lindenbaum sentence al-
gebras of r.e. theories (i.e., Boolean algebras
of the form B/I, where B is the countable free
Boolean algebra, and I is an r.e. ideal in B).

Moreover, this correspondence is functorial.

Namely, recursive functionals F : QQ — P (i.e.,
Medvedev reductions) correspond to recursive
homomorphisms Bp : Bp — Bg.

T his provides an alternative way to view Medvedev
reducibility: P <ps Q if and only if there exists
a recursive homomorphism f : Bp — Bg.
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Structural (lattice-theoretic) results:

Trivially P, > 0 implies P+ @ > 0, but we do
not know whether P,QQ < 1 implies P x Q < 1.

In Py, for every P > 0O, every countable dis-
tributive lattice is lattice embeddable below P.
For Pp; we have partial results in this direction.

To construct our lattice embeddings, we use
infinitary “almost lattice” operations, defined
in such a way that, if (P, :i € w) is a recursive
sequence of members of P, then

00 00
H P’i and Z P’i
1=0 1=0

are again members of P. We also use a finite
injury priority argument a la Martin/Pour-El
1970 and Jockusch/Soare 1972. To push the
embeddings below P, we use a Sacks preser-
vation strategy.

This is ongoing joint work with my Ph. D. stu-
dent Stephen Binns.
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Structural results (continued):

Corollary. In Py, for all P >4 0 there exists @
such that P > @ >w O.
(nonexistence of minimal Muchnik degrees)

Corollary. In Py, for all P > O there exists
such that P >;; Q >/ 0.
(nonexistence of minimal Medvedev degrees)

The last corollary was also obtained by
Douglas Cenzer and Peter Hinman, using a
different method: index sets.

Problem area:

Study structural properties of the countable
distributive lattices P, and P,,. Lattice em-
beddings, extensions of embeddings, quotient
lattices, cupping and capping, automorphisms,
definability, decidability, etc.
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An invidious comparison:

In some ways, the study of Py and Py,
parallels the study of R, the Turing degrees
of recursively enumerable subsets of w.

Pw WKL

Rr ACAQ

Analogy:

A regrettable aspect of Ry is that there are
no specific known examples of recursively
enumerable Turing degrees #= 0,0'. (See the
extensive FOM discussion of July 1999, in the
aftermath of the Boulder meeting.)

In this respect, Py and P,; are much better.
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Invidious comparison (continued):
For example, we have:

Theorem. The set of Muchnik degrees of MY
subsets of 2% of positive measure contains a
maximum degree. This particular Muchnik de-
gree is = 0,1. (Simpson 2001)

The theorem follows from three known results.

1. {X: X is 1-random} is 9 and of measure
one. (Martin-Lo6f 1966)

2. {X :3Y <p X (Y separates a recursively in-
separable pair of r.e. sets)} is of measure zero.
(Jockusch/Soare 1972)

3. If PP is of positive measure, then for all
1-random X there exists k such that X() =
An.X(n+ k) € P. (KuCera 1985)

Unfortunately, the theorem does not hold for
Medvedev degrees (Simpson/Slaman 2001).
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A related but apparently new result:

Theorem (Simpson 2000). If X is 1-random
and hyperimmune-free, then no Y <p X sepa-
rates a recursively inseparable pair of r.e. sets.

Other related results:

1. If X is 1-random and of r.e. Turing degree,
then X is Turing complete. (Kucera 1985)

2. {X : X is hyperimmune-free} is of measure
zero. (Martin 1967, unpublished)

Foundational significance:

All of these results are informative with respect
to w-models of WWKLg. WWKLg is a subsys-
tem of second order arithmetic which arises in
the Reverse Mathematics of measure theory.
(Yu/Simpson 1990)
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Some specific Medvedev degrees = 0O, 1:

For £ > 2 let DNR, be the set of k-valued DNR
functions. Each DNRy is recursively homeo-
morphic to a member of P. DNR»> is Medvedev
complete. In Py, we have

O
DNRy >3 DNR3 >p -+ >p > DNRg .
k=2
All of these Medvedev degrees are Muchnik
complete. (Jockusch 1989)

Problem area:

Find additional natural examples of Medvedev
and Muchnik degrees = 0, 1.

Experience suggests that natural examples could
be of significance for f.o.m.
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A related problem of Reverse Mathematics:

Let DNR(k) be the statement that for all X
there exists a k-valued DNR function relative
to X. It is known that, for each k£ > 2, DNR(k)
IS equivalent to Weak KoOnig's Lemma over
RCAp. Is dk(k > 2 A DNR(k)) equivalent to
Weak Konig's Lemma over RCAp?

This has a bearing on graph coloring problems
in Reverse Mathematics. See two recent pa-
pers of James H. Schmerl, to appear in MLQ)
and Reverse Mathematics 2001.

23



Another problem area:

One may study properties of interesting
subsets of Py and Pps. For example, we may
consider Muchnik and Medvedev degrees of
P € P with the following special properties:

1. P is of positive measure.

2. P is thin, i.e., for all NY sets Q C P there
exists a clopen set U C 2“ such that PNU = Q.
(See also the recent paper of
Cholak/Coles/Downey/Herrmann.)

3. P is separating, i.e.,

P = {X € 2¥: X separates A, B}

where A, B is a disjoint pair of r.e. sets.

These classes of Muchnik and Medvedev
degrees are related in interesting ways.
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Theorem (Simpson 2001). Let P € P be of
positive measure of maximum Muchnik degree.
Let Q € P be thin and #, 0. Then P and @
are Muchnik incomparable, i.e., P £, @ and

Q Lw P.

Theorem (Simpson 2001). Let P be as above.
Then P is non-branching in Py. L.e., there do
not exist Py, P> > P such that P = P1 + P>,
the infimum of P; and Ps.

Theorem (Simpson 2001). Let P,Q,S € P
with P as above and S separating.
If S <w P x@, then S <y Q.

Corollary. Let P be as above. Then P does
not join to 1 in Py. lLe., for all Q € P, if Q
is Muchnik incomplete, then so is P x @, the
supremum of P and Q.

A lemma used in proving these results:

Lemma. If P,QQ € P and P <y @, then there
exists R C @, R € P, such that P <,/ R.
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A picture of the Muchnik lattice P,:

maximum of
positive measure

P

ating

Martin /
Pour-El
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Some of my papers are available at
http://www.math.psu.edu/simpson/papers/.

Transparencies for my talks are available at
http://www.math.psu.edu/simpson/talks/.

THE END
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