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Turing 1936: unsolvability of the Halting Problem.

But, how much unsolvability is inherent in the Halting Problem?

We consider various unsolvable problems, and we measure and compare
the amount or degree of unsolvability which is inherent in them.

The Halting Problem has the same degree as
the decision problem for Peano Arithmetic: to decide whether
a given sentence is provable in PA or not. This degree is denoted 0′.

Post 1948, Kleene/Post 1954: decision problems.
A Turing degree is the degree of a decision problem.
DT = the semilattice of all Turing degrees.
ET = the sub-semilattice consisting of the recursively enumerable
Turing degrees, i.e., the degrees of decision problems for
recursively axiomatizable theories.

The top and bottom degrees in ET are 0′ and 0.
Beyond ET, there is a natural hierarchy of Turing degrees
0 < 0′ < 0′′ < 0′′′ < · · · < 0(n) < · · · < 0(α) < 0(α+1) < · · · where n is a
natural number, α is a transfinite ordinal number, and d 7→ d′:DT → DT
is the Turing jump operator. If d is the degree of a decision problem D,
then d′ is the degree of the Halting Problem relative to the oracle D.
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A picture of DT, the semilattice of all Turing degrees.
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In this picture, the black dots denote Turing degrees

0 < 0′ < 0′′ < 0′′′ < · · · < 0(α) < 0(α+1) < · · ·,
i.e., finite and transfinite iterates of the Turing jump operator.

The only known specific, natural examples of Turing degrees are

of the form 0(α) where α is a specific, natural, countable ordinal number.

E.g., α = 1, or α = 3, or α = ω, or α = ωω, or α = ε0, or α = ωCK
1 .
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I began studying degrees of unsolvability in the late 1960’s under my

future thesis adviser, Gerald Sacks. In his book Degrees of Unsolvability

I found certain infinite families of degrees in ET, but there were

no specific, natural examples of degrees in ET, other than 0 and 0′.

I asked Gerald about this. His answer was:

“All examples are misleading.”

Later, on page 4 of his book Saturated Model Theory, he elaborated:

It is no accident that the book suffers from a shortage of examples. As a rule
examples are presented by authors in the hope of clarifying universal
concepts, but all examples of the universal, since they must of necessity be
particular and so partake of the individual, are misleading.

These comments made me think hard. I had great respect for

recursively enumerable degrees and for Gerald’s insights and opinions

concerning them. However, I had already studied a fair amount of

graduate level mathematics, so I knew very well that most branches of

mathematics are motivated and nurtured by a rich stock of examples.

Therefore, as regards ET, it seemed important to somehow remedy the

lack of examples of r.e. Turing degrees.
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I started by trying to find at least one specific, natural example of an

r.e. Turing degree strictly between 0 and 0′. However, I learned early on

that Turing degree determinacy presents a serious obstacle. Therefore,

I instead thought about how to “tweak” ET to get a better structure.

Inspired by the reverse mathematics of measure theory,

I finally found the right structure, which I call Ew.

Ew is the lattice of Muchnik degrees of nonempty Π0
1 subclasses of

{0,1}N. It is a sublattice of the lattice Dw of all Muchnik degrees.

Just as Turing degrees are the degrees of decision problems,

so Muchnik degrees are the degrees of mass problems.

In this talk I shall explain mass problems and Muchnik degrees,

and I shall give an indication of what has been discovered

about Dw and Ew. The main points that I want to make are:

1. Ew is closely analogous to ET.

2. Ew includes a copy of ET.

3. Ew is in some ways better-behaved than ET.

4. Ew, unlike ET, contains a tremendous wealth of specific, natural

degrees which are closely related to interesting subjects such as

reverse mathematics and Kolmogorov complexity.
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Five books with the same title.

1. Gerald E. Sacks, Degrees of Unsolvability, Princeton University

Press, 1963, 55, Annals of Mathematics Studies, IX + 174 pages.

2. Joseph R. Shoenfield, Degrees of Unsolvability, North-Holland, 1971,

2, North-Holland Mathematics Studies, VIII + 111 pages.

3. Richard L. Epstein, Degrees of Unsolvability: Structure and Theory,

Lecture Notes in Mathematics, 759, Springer-Verlag, 1979, XIV +

240 pages.

4. Manuel Lerman, Degrees of Unsolvability, Springer-Verlag, 1983,

Perspectives in Mathematical Logic, XIII + 307 pages.

5. Stephen G. Simpson, Degrees of Unsolvability, in preparation.

However, my book will be different from the others.

Namely, it will emphasize specific natural examples of degrees,

including but not limited to iterates of the jump operator

0 < 0′ < 0′′ < 0′′′ · · · < 0(α) < 0(α+1) < · · ·.
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A picture of DT, the semilattice of all Turing degrees.
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In this picture, the black dots denote Turing degrees

0 < 0′ < 0′′ < 0′′′ < · · · < 0(α) < 0(α+1) < · · ·,
i.e., finite and transfinite iterates of the Turing jump operator.

The only known specific, natural examples of Turing degrees are

of the form 0(α) where α is a specific, natural, countable ordinal number.

E.g., α = 1, or α = 3, or α = ω, or α = ωω, or α = ε0, or α = ωCK
1 .
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A picture of Dw, the lattice of all Muchnik degrees.
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A key insight: There are many interesting unsolvable problems

which are not decision problems and do not have Turing degrees.

Example: the completion problem for Peano Arithmetic, denoted CPA.

This unsolvable problem is not equivalent to any decision problem.

However, it is still possible to assign a degree to CPA. So this degree,

denoted 1, cannot be a Turing degree. In other words, 1 /∈ DT.

Muchnik 1963, Simpson 1999: mass problems.
A Muchnik degree is the degree of a mass problem.

Dw = the lattice of all Muchnik degrees.

Ew = the lattice of Muchnik degrees of nonempty Π0
1 classes P ⊆ {0,1}N.

An example of a mass problem is the completion problem CPA.

The Muchnik degree of CPA is 1. For a long time Muchnik degrees

were unknown in the USA, perhaps because of the Cold War.

The lattice Dw includes the semilattice DT, and there is an analogy

ET
DT

=
Ew
Dw

.

Just as ET is a sub-semilattice of DT, so Ew is a sublattice of Dw.

The top and bottom degrees in ET are 0′ and 0.

The top and bottom degrees in Ew are 1 and 0.

And 0 < 1 < 0′, but the only Turing degree in Ew is 0.
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What are mass problems and Muchnik degrees?

For purposes of this talk, a mass problem is any set P ⊆ N
N, viewed as

the “problem” of “finding” or “computing” at least one member of P .

Thus, a mass problem P ⊆ NN is solvable if at least one member of P

is recursive, i.e., P ∩Rec 6= ∅. And for mass problems P,Q ⊆ N
N,

we say that P is reducible to Q, written P ≤w Q, if

(∀Y ∈ Q) (∃X ∈ P) (X ≤T Y ). I.e., every “solution” of Q

can be used as an oracle to “compute” at least one “solution” of P .

The Muchnik degree of P , denoted degw(P),

is the equivalence class of P under mutual reducibility.

The lattice Dw of all Muchnik degrees may be viewed as the completion

of the semilattice DT of all Turing degrees, in much the same way as

the real numbers are the completion of the rational numbers.

Namely, we have a natural embedding

degT(X) 7→ degw({Y | X ≤T Y }):DT → D̂T = Dw. This is an instance of a very general

construction going back to Birkhoff 1937 and Alexandrov 1937. For any partially

ordered set K, there is natural embedding x 7→ {y ∈ K | x ≤ y}:K → K̂, where K̂ consists

of all upwardly closed subsets of K, ordered by reverse inclusion. Note that K̂ is a

complete and completely distributive lattice.
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We know many examples of specific, natural, real numbers which are

not rational numbers:
√
2, e, π, etc.

Similarly, there are many specific, natural Muchnik degrees which are

not Turing degrees:

r = r(0) < r(0′) < r(0′′) < · · · < r(0(ω)) < · · · <∞,

r = r(·) > r(·/2) > r( 2
√·) > r(log2 ·) > · · · > r(Rec) > a,

a < a(Rec) < · · · < a(2 ·) < a(· 2) < · · ·,

aslow < · · · < a(·) < a(·/2) < a( 2
√·) < a(log2 ·) < · · · < 1,

b(0′) < b(0′′) < b(0′′′) < · · · < b(0(ω)) < · · · < ∞.

We shall explain these examples of Muchnik degrees in the lattice Dw.

Some of them belong to the sublattice Ew and some do not.
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A picture of Dw.
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0 = degw(0), and 0(α) = the αth Turing jump of 0. Thus 0 = 0(0),

0′ = 0(1), 0′′ = 0(2), 0′′′ = 0(3), etc., and all of these are Turing degrees.

1 = degw(CPA) where CPA is the problem of finding a completion of

Peano Arithmetic. Instead of PA we could use Z2, or ZFC, etc.

r = degw(MLR) where MLR is the problem of finding at least one

infinite sequence Z ∈ {0,1}N which is random in the sense of Martin-Löf.

This degree is implicit in the reverse mathematics of measure theory.

More generally, for any Turing degree x = degT(X),

we write r(x) = degw(MLRX) where

MLRX = {Z ∈ {0,1}N | Z is random relative to X}.

Also, we write b(x) = degw({Y | MLRX ≤w MLRY }).
Note that MLRX ≤w MLRY if and only if

X is LR-reducible to Y in the sense of Nies.

The degrees r(0(α)) and b(0(α)) are implicit in the reverse mathematics

of measure theory. For instance, b(0(α)) = the Muchnik degree of

this problem: to find a Turing oracle Y such that every Σ0
α+2 set S ⊆ R

has a Σ
0,Y
2 subset of the same Lebesgue measure.
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A picture of Dw.
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More on the sublattice Ew.

Recall that ET = {degT(X) | X ⊆ N is a Σ0
1 decision problem},

and the top and bottom degrees of ET are 0′ and 0.

Similarly, Ew = {degw(P) | P ⊆ {0,1}N is a nonempty Π0
1 class},

and the top and bottom degrees of Ew are 1 and 0.

Note the analogy: ET (respectively Ew) is

the sub-semilattice of DT (respectively, the sublattice of Dw)

at the lowest level of the arithmetical hierarchy.

However, the only degree in ET ∩ Ew is 0.

There is an obvious standard embedding of DT into Dw,

namely degT(X) 7→ degw({X}) = degw({Y | X ≤T Y }):DT → Dw.

There is a not-so-obvious embedding of ET into Ew,

namely x 7→ x ∨ 1: ET → Ew.

These embeddings are one-to-one and preserve

the algebraic structure of DT and ET respectively.

In particular, we have 0 < 1 < 0′.
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Examples of Muchnik degrees in Ew.

The bottom and top degrees of Ew are 0 and 1.

And r = r(0) ∈ Ew, and 0 < r < 1. This degree r = degw(MLR) is the

first non-trivial example of a specific, natural, Muchnik degree in Ew.

For all Muchnik degrees p,q ∈ Dw, we write

p ∨ q = the greatest lower bound of p and q, and

p ∧ q = the least upper bound of p and q.

(This is the opposite of the usual lattice notation.)

Remarkably, there are many specific, natural degrees p ∈ Dw

such that p /∈ Ew but p ∨ 1 ∈ Ew.

E.g., for all α in the range 0 < α < ωCK
1 ,

we have b(0(α)) /∈ Ew but b(0(α)) ∨ 1 ∈ Ew.

And, r(0′) /∈ Ew but r(0′) ∨ 1 ∈ Ew.

On the other hand, r(0(α)) ∨ 1 /∈ Ew for all α ≥ 2.

In addition, for all recursively enumerable Turing degrees x ∈ ET,

we have x ∨ 1 ∈ Ew. And this gives a specific, natural embedding

x 7→ x ∨ 1: ET → Ew which preserves the algebraic structure: order,

semilattice, top, bottom. However, none of these degrees x ∨ 1

are known to be specific and natural, except 0 and 1.
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A picture of Ew, the lattice of Muchnik degrees

of nonempty Π0
1 subclasses of {0,1}N.
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Structural analogies between ET and Ew.

The most famous structural results for ET are

the Splitting Theorem and the Density Theorem:

Splitting Theorem for ET (Sacks 1962):

ET satisfies ∀x (x > 0 ⇒ ∃u∃v (x > u and x > v and x= u ∧ v)).
Density Theorem for ET (Sacks 1964):

ET satisfies ∀x∀y (x > y ⇒ ∃z (x > z > y)).

There are analogous structural results for Ew:

Splitting Theorem for Ew (Binns 2003):

Ew satisfies ∀x (x > 0 ⇒ ∃u∃v (x > u and x > v and x= u ∧ v)).
Density Theorem for Ew (Binns/Shore/Simpson 2016):

Ew satisfies ∀x∀y (x > y ⇒ ∃z (x > z > y)).

What about Dense Splitting?

∀x∀y (x > y ⇒ ∃u ∃v (x > u > y and x > v > y and x = u ∧ v))?
We know that ET does not satisfy this. (Lachlan, 1976).

We do not know whether Ew satisfies this.

18



More examples of specific, natural degrees in Ew.

For f :N → [0,∞) we define r(f) = degw(K(f)) where

K(f) = {X ∈ {0,1}N | K(X↾{0,1, . . . , n− 1}) ≥+ f(n)}. Here K denotes

a priori Kolmogorov complexity, and ≥+ denotes ≥ modulo an additive

constant. (Instead of K we could use Martin-Löf-style tests.)

By varying the growth rate of f , we get a hierarchy of specific, natural

degrees r(f) ∈ Ew. For instance, r(·/2) > r(·/3) and r( 2
√·) > r( 3

√·) and

r(log2 ·) > r(log3 ·). This is called the partial randomness hierarchy.

A partial recursive function ψ :⊆N → N is universal if for all partial

recursive functions ϕ :⊆N → N there exists a recursive function r:N → N

such that ϕ(n) ≃ ψ(r(n)) for all n. And ψ is linearly universal if it is

universal via linear functions.

We say that X ∈ NN avoids ψ if X(n) 6≃ ψ(n) for all n.
Let a = degw(UA) = degw(LUA) where UA = {X ∈ NN | X avoids some

universal ψ} and LUA = {X ∈ NN | X avoids some linearly universal ψ}.
For p:N → [0,∞) we define a(p) = degw({X ∈ LUA | X is p-bounded}).
This is called the avoidance hierarchy.

We define a(Rec) = degw({X ∈ LUA | X is recursively bounded}), and

a(slow) = degw({X ∈ LUA | X is q-bounded for some slow-growing

recursive q}). Here slow-growing means that
∑
n 1/q(n) = ∞.
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A picture of Ew.
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A history of Ew in pictures.
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Selected papers related to Ew (in chronological order).

Stephen G. Simpson, Natural r.e. degrees and Pi01 classes, FOM e-mail list, August
13, 1999.

Stephen Binns, The Medvedev and Muchnik Lattices of Π0
1 Classes, Pennsylvania

State University, 2003, VII + 80 pages, http://etda.libraries.psu.edu/paper/6092/.

Stephen Binns, A splitting theorem for the Medvedev and Muchnik lattices,
Mathematical Logic Quarterly, 2003, 49, 327–335.

Stephen Binns and Stephen G. Simpson, Embeddings into the Medvedev and Muchnik
Lattices of Π0

1 Classes, Archive for Mathematical Logic, 2004, 43, 399–414.

Stephen G. Simpson, Mass problems and randomness, Bulletin of Symbolic Logic,
2005, 11, 1–27.

Peter Cholak and Noam Greenberg and Joseph S. Miller, Uniform almost everywhere
domination, Journal of Symbolic Logic, 2006, 71, 1057–1072.

Stephen G. Simpson, An extension of the recursively enumerable Turing degrees,
Journal of the London Mathematical Society, 2007, 75, 287–297.

Bjørn Kjos-Hanssen, Low-for-random reals and positive-measure domination,
Proceedings of the American Mathematical Society, 2007, 135, 3703–3709.

Joshua A. Cole and Stephen G. Simpson, Mass problems and hyperarithmeticity,
Journal of Mathematical Logic, 2008, 7, 125–143.

Stephen G. Simpson, Mass problems and measure-theoretic regularity, Bulletin of
Symbolic Logic, 2009, 15, 385–409.

(continued on next slide)
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Selected papers related to Ew (continued).

Joseph S. Miller, Extracting information is hard: a Turing degree of non-integral
effective Hausdorff dimension, Advances in Mathematics, 2011, 226, 373–384.

Noam Greenberg and Joseph S. Miller, Diagonally non-recursive functions and
effective Hausdorff dimension, Bulletin of the London Mathematical Society, 2011, 43,
636–654.

Bjørn Kjos-Hanssen and Joseph S. Miller and David Reed Solomon, Lowness notions,
measure and domination, Journal of the London Mathematical Society, 2012, 85,
869–888.

W. M. Phillip Hudelson, Partial Randomness and Kolmogorov Complexity,
Pennsylvania State University, 2013, VII + 107 pages,
http://etda.libraries.psu.edu/paper/17456/.

W. M. Phillip Hudelson, Mass problems and initial segment complexity, Journal of
Symbolic Logic, 2014, 79, 20–44.

Stephen Binns and Richard A. Shore and Stephen G. Simpson, Mass problems and
density, Journal of Mathematical Logic, 2016, 16, 1650006 (10 pages).

Laurent Bienvenu and Christopher P. Porter, Deep Π0
1 classes, Bulletin of Symbolic

Logic, 2016, 22, 249–286.

Noam Greenberg and Joseph S. Miller and André Nies, Highness properties close to
PA-completeness, Israel Journal of Mathematics, 2021, 244, 419–465.

Hayden R. Jananthan, Complexity and Avoidance, Vanderbilt University, 2021, VIII +
157 pages, https://arxiv.org/abs/2204.11289.
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A history of Ew in pictures.
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Thank you for your attention!
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