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Degrees of unsolvability.

Let N = {the natural numbers} = {1,2, . . .}.

Let Ω = {0,1}N = {x | x : N → {0,1}}
= the Cantor space.

Consider a Turing machine M with three

infinite tapes: the input tape, the output

tape, and the scratch tape. Assume that the

input tape is read-only and the output tape is

write-once. We use M to define a partial

functional ΦM :⊆ Ω → Ω, as follows.

Given x, y ∈ Ω let M(x) = the run of M

starting with x on the input tape and blanks

on the output and scratch tapes. We define

ΦM(x) = y if and only if M(x) writes y on the

output tape. Otherwise ΦM(x) is undefined.

Here x is used as an “oracle” which helps us

to compute y. We say that y is computable

relative to x. This idea came from Turing.

Note that ΦM is continuous on its domain.
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For sets P, Q ⊆ Ω we define:

P ≥s Q, i.e., Q is strongly reducible to P ,

if and only if ∃M ∀x (x ∈ P ⇒ ΦM(x) ∈ Q).

P ≥w Q, i.e., Q is weakly reducible to P ,

if and only if ∀x∃M (x ∈ P ⇒ ΦM(x) ∈ Q).

Motivation: The sets P, Q ⊆ Ω are regarded

as “problems.” The “solutions” of P are the

elements of P . Such problems are known as

mass problems. The problem P is said to be

“solvable” if at least one of its solutions is

computable. Otherwise P is said to be

“unsolvable.” The problem Q is said to be

“reducible” to the problem P if each solution

x of P can be used as a Turing oracle to

compute some solution y of Q.

The distinction between ≥s and ≥w lies in

whether or not the Turing machine M which

computes y relative to x is required to be

independent of x.
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History:

Kolmogorov 1932 developed his “calculus of

problems” as a nonrigorous yet compelling

explanation of Brouwer’s intuitionism. Later

Medvedev 1955 and Muchnik 1963 proposed

strong and weak reducibility as rigorous

explications of Kolmogorov’s idea.

Some references:

Stephen G. Simpson, Mass problems and randomness,
Bulletin of Symbolic Logic, 11, 2005, pages 1–27.

Stephen G. Simpson, Medvedev degrees of
2-dimensional subshifts of finite type, 8 pages, 1 May
2007; accepted 26 September 2007 for publication in
Ergodic Theory and Dynamical Systems.

Stephen G. Simpson, Mass problems and intuitionism,
Notre Dame Journal of Formal Logic, 49, 2008, pages
127–136.

Stephen G. Simpson, Mass problems and
measure-theoretic regularity, Bulletin of Symbolic
Logic, 15, 2009, pages 385–409.

Stephen G. Simpson, Entropy equals dimension equals
complexity, 2010, in preparation.
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More definitions:

P ≡s Q ⇔ (P ≤s Q ∧ Q ≤s P).

P ≡w Q ⇔ (P ≤w Q ∧ Q ≤w P).

degs(P) = {Q | P ≡s Q}

= the strong degree of P .

degw(P) = {Q | P ≡w Q}

= the weak degree of P .

Ds = {degs(P) | P ⊆ Ω}.

Ds has a partial ordering ≤ induced by ≤s.

Dw = {degw(P) | P ⊆ Ω}.

Dw has a partial ordering ≤ induced by ≤w.

Remark. Medvedev 1955 and Muchnik 1963
respectively noted that Ds and Dw are
complete Brouwerian lattices. Aspects of
these lattices have been studied by Dyment,
Skvortsova, Sorbi, Terwijn, and others.

Note. The cardinality of Ds and Dw is 22ℵ0.
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Yet more definitions:

U ⊆ Ω is effectively open if U =
∞⋃

n=1

Ωg(n)

for some comptable function g : N → {0,1}∗.

P ⊆ Ω is effectively closed if its complement

Ω \ P is effectively open.

Es = {degs(P) | ∅ 6= P ⊆ Ω, P eff. closed}.

Ew = {degw(P) | ∅ 6= P ⊆ Ω, P eff. closed}.

Remark. Es and Ew are countable sublattices

of Ds and Dw respectively. Much is known

about them. For instance, both Es and Ew

contain a bottom degree, denoted 0, and

a top degree, denoted 1. Obviously

0 = degs(Ω) = degw(Ω). However, the

existence of 1 in Es and Ew is not so obvious.

A well-known characterization of 1 will be

mentioned later.
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dimension, d = diagonal nonrecursiveness.
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We now explain some degrees in Ew.

The top degree in Ew is 1 = degw(CPA)

where CPA is the problem of finding

a complete, consistent theory which

includes first-order arithmetic.

We also have inf(a, 1) ∈ Ew where a is

any recursively enumerable Turing degree.

Moreover, a < b implies inf(a, 1) < inf(b, 1)

We have r1 ∈ Ew where r1 = degw({z ∈ Ω |

z is random in the sense of Martin-Löf}).

We also have inf(r2, 1) ∈ Ew where

r2 = degw({z ∈ Ω | z is 2-random}),

i.e., random relative to the halting problem.

Also d ∈ Ew where d = degw({f ∈ NN |

f is diagonally nonrecursive}),

i.e., ∀n (f(n) 6= ϕn(n)).

9



Let REC = {g ∈ NN | g is recursive}.

Let C be any “nice” subclass of REC.

For instance C = REC, or C = {g ∈ REC |

g is primitive recursive}. We have dC ∈ Ew

where dC = degw({f ∈ NN | f is diagonally

nonrecursive and C-bounded}),

i.e., (∃g ∈ C)∀n (f(n) < g(n)).

Also, dC = degw({z ∈ Ω | z is C-complex},

i.e., (∃g ∈ C)∀n (K(z↾{1, . . . , g(n)}) ≥ n)}).

Moreover, dC′ < dC whenever C′ contains a

function which dominates all functions in C.

For z ∈ Ω let effdim(z) = the

effective Hausdorff dimension of z, i.e.,

effdim(z) = lim inf
n→∞

K(z↾{1, . . . , n})

n
.

Given a right recursively enumerable real

number s < 1, we have qs ∈ Ew where

qs = degw({z | effdim(z) > s}).

Moreover, s < t implies qs < qt (Miller).
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Using x as an oracle, define

Rx = {z ∈ Ω | z is random relative to x}

and Kx(n) = the prefix-free Kolmogorov

complexity of n relative to x.

Define x ≤LR y ⇔ Ry ⊆ Rx

and x ≤LK y ⇔ ∃c∀n (Ky(n) ≤ Kx(n) + c).

Theorem (Miller/Kjos-Hanssen/Solomon).

We have x ≤LR y if and only if x ≤LK y.

For each recursive ordinal number α, let

0(α) = the αth iterated Turing jump of 0.

Thus 0(1) = the halting problem, and

0(α+1) = the halting problem relative to 0(α),

etc. This is the hyperarithmetical hierarchy.

We embed it naturally into Ew as follows.

Theorem (Simpson 2009). 0(α) ≤LR y ⇔

every Σ0
α+2 set includes a Σ

0,y
2 set

of the same measure. Moreover,

letting bα = degw({y | 0(α) ≤LR y}) we have

inf(bα, 1) ∈ Ew and inf(bα, 1) < inf(bα+1, 1).
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r = randomness, b = LR-reducibility, q =

dimension, d = diagonal nonrecursiveness.

12



Symbolic dynamics.

Let A be a finite set of symbols. Let

Z = the integers = {. . . ,−2,−1,0,1,2, . . .}.

We write AZ = {x | x : Z → A}.

This is the full shift space on A.

The shift operator S : AZ → AZ is given

by S(x)(i) = x(i + 1) for all i ∈ Z.

A subshift is a set X ⊆ AZ which is

nonempty, closed, and shift invariant,

i.e., ∀x (x ∈ X ⇔ S(x) ∈ X).

If X and Y are subshifts, a shift morphism

from X to Y is a continuous mapping

f : X → Y such that f(S(x)) = S(f(x))

for all x ∈ X.

Symbolic dynamics is the study of subshifts

and shift morphisms.
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Subshifts defined by excluded words.

Given E ⊆ A∗ =
∞⋃

n=1

An let XE =

{x ∈ AZ | (∀i ∈ Z) ∀n 〈x(i+1), . . . , x(i+n)〉 /∈ E}.

Thus E is a set of “excluded words.”

Clearly XE is a subshift, provided it is 6= ∅.

Moreover, all subshifts are of this form.

If E is finite, the subshift XE

is said to be of finite type.

If E is computable, the subshift XE

is said to be of computable type.
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Some easy remarks:

1. If f : X → Y is a shift morphism,

then X ≥s Y and X ≥w Y .

In fact, f is a “block code.”

2. If f, f−1 : X ↔ Y are shift morphisms,

then X ≡s Y and X ≡w Y .

Thus, the strong and weak degrees

of a subshift are “conjugacy invariants.”

3. X is of computable type

if and only if X is effectively closed.

4. If X is of computable type, then

degs(X) ∈ Es and degw(X) ∈ Ew.

Theorem (Joseph Miller). Conversely,

each degree in Es or Ew is, respectively,

the strong or weak degree of

a subshift of computable type.

The proof is ingenious but not difficult.
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We now generalize to d-dimensional subshifts.

For d ≥ 1 we write Zd = Z × · · · × Z
︸ ︷︷ ︸

d

.

As before, let A be a finite set of symbols.
The full d-dimensional shift space over A is

AZd
= {x | x : Zd → A}. The shift operators

Sk : AZd
→ AZd

for k = 1, . . . , d are given by

Sk(x)(i1, . . . , id) = x(i1, . . . , ik + 1, . . . , id).

A d-dimensional subshift is a set X ⊆ AZd

which is closed, nonempty, and shift invariant,
i.e., (∀k)1≤k≤d∀x (x ∈ X ⇔ Sk(x) ∈ X).

Each d-dimensional subshift is of the form

XE = {x ∈ AZd
| ∀n (∀i1, . . . , id ∈ Z)

(〈x(i1 + j1, . . . , id + jd)〉1≤j1,...,jd≤n /∈ E)}

where E ⊆
∞⋃

n=1

A{1,...,n}d
. Thus E is

a set of “excluded d-dimensional words.”

If E is finite, we say that XE is of finite type.

If E is computable, we say that XE is
of computable type.
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All of our earlier remarks concerning

the 1-dimensional case extend easily to

the d-dimensional case.

Theorem (Simpson). Each degree in Es or

Ew is, respectively, the strong or weak degree

of a 2-dimensional subshift of finite type.

The proof uses techniques going back to

R. Berger 1965 and R. Robinson 1972.

Another proof can be obtained

by means of “self-replicating tile sets”

(Durand/Romashchenko/Shen).

Remark. There are many specific,

interesting degrees in Ew. By the above

theorems, each degree in Ew is realized by

(a) a 1-dimensional subshift of computable

type (Miller), and

(b) a 2-dimensional subshift of finite type

(Simpson).
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A possibly interesting research program:

Given a subshift X, explore the relationship

between the dynamical properties of X

and the degree of unsolvability of X,

i.e., degs(X) or degw(X).

For example, the entropy of X is a

well-known dynamical property which serves

as an upper bound on the complexity of

orbits. In particular ent(X) > 0 implies

(∃x ∈ X) (x is not computable).

By contrast, the degree of unsolvability of X

serves as a lower bound on the complexity of

orbits. E.g., degs(X) > 0 ⇔ degw(X) > 0 ⇔

(∀x ∈ X) (x is not computable).

Theorem (Hochman). If X is of computable

type and minimal (i.e., every orbit is dense),

then degs(X) = degw(X) = 0.

The proof is not difficult.
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Some new (?) results on subshifts:

Let d be a positive integer, let A be a finite

set of symbols, and let X be a subset

of ANd
(the “one-sided” case) or

of AZd
(the “two-sided” case).

The Hausdorff dimension, dim(X), and the

effective Hausdorff dimension, effdim(X), are

defined as usual with respect to the standard

metric ρ(x, y) = 2−|Fn| where n is

as large as possible such that x↾Fn = y↾Fn.

Here Fn = {1, . . . , n}d in the one-sided case,

and Fn = {−n, . . . , n}d in the two-sided case.

We first state some old results.

1. effdim(X) = sup
x∈X

effdim({x}).

2. effdim({x}) = lim inf
n→∞

K(x↾Fn)

|Fn|
.

3. effdim(X) = dim(X)

provided X is effectively closed.
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We now state some apparently new results.

Theorem (2010). Assume that X is

nonempty, closed and shift-invariant. Then

effdim(X) = dim(X) = ent(X).

Moreover,

dim(X) ≥ lim sup
n→∞

K(x↾Fn)

|Fn|
for all x ∈ X,

and

dim(X) = lim
n→∞

K(x↾Fn)

|Fn|
for some x ∈ X.

Note. Here X can be any kind of subshift:

1-sided or 2-sided, effectively closed or closed,

1-dimensional or d-dimensional.

Remark. Here ent(X) denotes entropy,

ent(X) = lim
n→∞

log2 |{x↾Fn | x ∈ X}|

|Fn|
.

This is known to be a conjugacy invariant.
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Remark. The proof of this theorem involves

ergodic theory (Shannon/McMillan/Breiman,

the Variational Principle, etc.) plus a

combinatorial argument which is similar to

the proof of the Vitali Covering Lemma.

Remark. So far as I can tell, everything in

the theorem is new, except the following old

result due to Furstenberg: dim(X) = ent(X)

provided X is one-sided and 1-dimensional.

The proof of this special case is much easier.

Remark. The above theorem is an outcome

of my discussions at Penn State over the past

several months with many people including

John Clemens, Michael Hochman, Daniel

Mauldin, Jan Reimann, and Alexander Shen.

THE END.

THANK YOU!
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