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Degrees of unsolvability.

Let N = {the natural numbers} = {1,2,...}.

Let Q={0, 1N ={z|2:N—-{0,1}}
— the Cantor space.

Consider a Turing machine M with three
infinite tapes: the input tape, the output
tape, and the scratch tape. Assume that the
input tape is read-only and the output tape is
write-once. We use M to define a partial
functional ®,, :C 2 — €2, as follows.

Given z,y € Q2 let M(z) = the run of M
starting with « on the input tape and blanks
on the output and scratch tapes. We define
d /() =y if and only if M (x) writes y on the
output tape. Otherwise ®,,(x) is undefined.

Here x is used as an “oracle” which helps us
to compute y. We say that y is computable
relative to x. This idea came from Turing.

Note that ®,, is continuous on its domain.

2



For sets P, (Q C €2 we define:

P >sQ, i.e., Q is strongly reducible to P,
if and only if AMVz (x € P = P (x) € Q).

P>w @, i.e., Q is weakly reducible to P,
if and only if VedM (z € P = ® () € Q).

Motivation: The sets P, Q) C {2 are regarded
as “problems.” The “solutions” of P are the
elements of P. Such problems are known as
mass problems. The problem P is said to be
“solvable” if at least one of its solutions is
computable. Otherwise P is said to be
“unsolvable.” The problem @ is said to be
“reducible’” to the problem P if each solution
x of P can be used as a Turing oracle to
compute some solution y of Q.

The distinction between >s and >w lies in
whether or not the Turing machine M which
computes y relative to x is required to be
independent of z.



History:

Kolmogorov 1932 developed his “calculus of
problems”™ as a nonrigorous yet compelling
explanation of Brouwer's intuitionism. Later
Medvedev 1955 and Muchnik 1963 proposed
strong and weak reducibility as rigorous
explications of Kolmogorov's idea.
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More definitions:

P=sQ& (P<sQNQ<sP).
degs(P) ={Q | P =s Q}
— the strong degree of P.

degw(P) ={Q | P =w Q}

— the weak degree of P.
Ds = {degs(P) | P C €2}
Ds has a partial ordering < induced by <s.
Dw = {degw(P) | P C Q2}.
Dw has a partial ordering < induced by <w.
Remark. Medvedev 1955 and Muchnik 1963
respectively noted that Ds and Dy are
complete Brouwerian lattices. Aspects of

these lattices have been studied by Dyment,
Skvortsova, Sorbi, Terwijn, and others.

Note. The cardinality of Ds and Dy is 22°°.
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Yet more definitions:

oo
U C Qs effectively open if U= [] Q)
n=1

for some comptable function g : N — {0, 1}*.

P C Q is effectively closed if its complement
Q2 \ P is effectively open.

Es = {degs(P) | 0 = P C 2, P eff. closed}.
Ew = {degw(P) |0 # P C 2, P eff. closed}.

Remark. & and &y are countable sublattices
of Ds and Dy respectively. Much is known
about them. For instance, both & and &w
contain a bottom degree, denoted 0, and

a top degree, denoted 1. Obviously

0 = degs(2) = degyw (£2). However, the
existence of 1 in & and &w is not so obvious.
A well-known characterization of 1 will be
mentioned later.



1=deg, (CPA)

A picture of &w. Each black dot except

inf(a, 1) represents a specific, natural degree

in Ew. We shall explain some of these degrees.
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1=deg, (CPA)

A picture of &w. Here a = any r.e. degree,
r = randomness, b = LR-reducibility, q =
dimension, d = diagonal nonrecursiveness.
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We now explain some degrees in Ew.

The top degree in Ew is 1 = degy (CPA)
where CPA is the problem of finding

a complete, consistent theory which
includes first-order arithmetic.

We also have inf(a,1) € &w where a is
any recursively enumerable Turing degree.
Moreover, a < b implies inf(a,1) < inf(b, 1)

We have r1 € Eéw where r; = degyw({z € 2|
z is random in the sense of Martin-Lo6f}).

We also have inf(ro,1) € éw where
ro = degw({z € Q| z is 2-random}),
i.e., random relative to the halting problem.

Also d € E&w where d = degy, ({f € NN |
f is diagonally nonrecursive}),

i.e., Vn (f(n) # ¢n(n)).



Let REC = {g € NN | g4 is recursive}.

Let C' be any “nice” subclass of REC.
For instance C = REC, or C = {g € REC|
g is primitive recursive}. We have dg € &w
where do = degw({f € NN | f is diagonally
nonrecursive and C-bounded}),

i.e., (3ge O)Vn(f(n) < g(n)).

Also, dg = degw({z € 2 | z is C-complex},

e., (Jg € C)Vn (K(zI{1,...,g(m)}) > n)}).
Moreover, d- < do whenever C’ contains a
function which dominates all functions in C.

For z € Q let effdim(z) = the
effective Hausdorff dimension of z, i.e.,

effdim(z) = limnf LG mh),

n—aoo n

Given a right recursively enumerable real
number s < 1, we have qs € E&w Where

qs = degw({z | effdim(z) > s}).

Moreover, s <t implies qs < q+ (Miller).
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Using x as an oracle, define
RT = {z € Q2| z is random relative to z}

and K¥(n) = the prefix-free Kolmogorov
complexity of n relative to «x.

Define s <|pry & RYCR?
and z <| ky < deVn (K¥(n) < K¥(n) 4+ ¢).

Theorem (Miller/Kjos-Hanssen/Solomon).
We have z < ry if and only if x < k v.

For each recursive ordinal number «, let

0(®) = the ath iterated Turing jump of O.
Thus 0(1) = the halting problem, and

o(at+1) — the halting problem relative to 0(®)
etc. This is the hyperarithmetical hierarchy.
We embed it naturally into &w as follows.

Theorem (Simpson 2009). 0(®) <| r y <
every Zg+2 set includes a Zg’y set

of the same measure. Moreover,

letting by = degyw ({y | o(a) < r ¥}) we have
inf(bqa, 1) € Ew and inf(bg,1) < inf(b,41,1).
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1=deg, (CPA)

A picture of &w. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, q =

dimension, d = diagonal nonrecursiveness.
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Symbolic dynamics.

Let A be a finite set of symbols. Let

Z, = the integers ={...,—2,-1,0,1,2,...}.
We write A2 = {z |z :7Z — A}

This is the full shift space on A.

The shift operator S : AL — AZ is given
by S(2)(i) = z(i + 1) for all i € Z.

A subshift is a set X C AZ which is
nonempty, closed, and shift invariant,

e, Ve (zr € X & S(x) € X).

If X and Y are subshifts, a shift morphism
from X to Y is a continuous mapping

f: X — Y such that f(S(z)) = S(f(x))

for all z € X.

Symbolic dynamics is the study of subshifts
and shift morphisms.
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Subshifts defined by excluded words.

©.@)
Given EC A* = | A" let Xp =
n=1
{z € AL | (Vi € Z)VYn (z(i+1),...,2(i+n)) ¢ E}.
Thus F is a set of “excluded words.”
Clearly X is a subshift, provided it is £ 0.

Moreover, all subshifts are of this form.

If E is finite, the subshift Xg
IS said to be of finite type.

If £ is computable, the subshift Xg
IS said to be of computable type.
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Some easy remarks:

1. If f: X — Y is a shift morphism,
then X >sY and X >w Y.

In fact, f is a “block code.”

2. If f,f~1: X — Y are shift morphisms,
then X =Y and X =w Y.

Thus, the strong and weak degrees

of a subshift are *“conjugacy invariants.”

3. X is of computable type
if and only if X is effectively closed.

4. If X is of computable type, then
degs(X) € & and degyw(X) € Ew.

Theorem (Joseph Miller). Conversely,
each degree in & or &w is, respectively,
the strong or weak degree of

a subshift of computable type.

The proof is ingenious but not difficult.
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We now generalize to d-dimensional subshifts.
Ford>1wewrite Z*=7Zx--- x 7,

~~

d
As before, let A be a finite set of symbols.

The full d-dimensional shift space over A is
ALY = (4| 2 : Z¢ — A}. The shift operators
S, 0 AZY 5 AZ% for k= 1,...,d are given by
S (2)(igs . ig) = @it ip 41, i),

A d-dimensional subshift is a set X C AZ°

which is closed, nonempty, and shift invariant,
i.e., (Vk)lSdeVx (CE‘ cX & Sk(a:) c X)

Each d-dimensional subshift is of the form
Xp = {z € A% | Yn (Viy,... ,ig€ 7)
((z(i1 +d1, - ig F Ja))1<jy,...ig<n & E)}

oo
where E C | Al Thus Eis

n=1

a set of “excluded d-dimensional words.”

If £ is finite, we say that Xg is of finite type.

If E is computable, we say that Xg is
of computable type.
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All of our earlier remarks concerning
the 1-dimensional case extend easily to
the d-dimensional case.

Theorem (Simpson). Each degree in & or
Ew IS, respectively, the strong or weak degree
of a 2-dimensional subshift of finite type.

The proof uses techniques going back to
R. Berger 1965 and R. Robinson 1972.
Another proof can be obtained

by means of ‘self-replicating tile sets”
(Durand/Romashchenko/Shen).

Remark. There are many specific,
interesting degrees in £w. By the above
theorems, each degree in &y is realized by

(a) a 1-dimensional subshift of computable
type (Miller), and

(b) a 2-dimensional subshift of finite type
(Simpson).
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A possibly interesting research program:

Given a subshift X, explore the relationship
between the dynamical properties of X

and the degree of unsolvability of X,

i.e., degs(X) or degw(X).

For example, the entropy of X is a
well-known dynamical property which serves
as an upper bound on the complexity of
orbits. In particular ent(X) > 0 implies

(dx € X) (x is not computable).

By contrast, the degree of unsolvability of X
serves as a lower bound on the complexity of
orbits. E.g., degs(X) > 0 < degp(X) >0 <
(Vx € X) (z is not computable).

Theorem (Hochman). If X is of computable
type and minimal (i.e., every orbit is dense),
then degq(X) = degy(X) = 0.

The proof is not difficult.
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Some new (?7) results on subshifts:

Let d be a positive integer, let A be a finite
set of symbols, and let X be a subset

of AN (the “one-sided” case) or

of AZ’ (the “two-sided” case).

The Hausdorff dimension, dim(X), and the
effective Hausdorff dimension, effdim(X), are
defined as usual with respect to the standard
metric p(z,y) = 2~ 1l where n is

as large as possible such that x[F, = y[Fn.
Here F,, = {1,. n}d in the one-sided case,

and Fy, = {—n,...,n}? in the two-sided case.

We first state some old results.

1. effdim(X) = sup effdim({x}).
reX

| Fn|

2. effdim({z}) = liminf

n—aoo

3. effdim(X) = dim(X)
provided X is effectively closed.
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We now state some apparently new results.

Theorem (2010). Assume that X is
nonempty, closed and shift-invariant. Then

effdim(X) = dim(X) = ent(X).

Moreover,
K(z|F,
dim(X) > limsup (@] Fn) for all z € X,
n—oo | En
and
K(z|F,
dim(X) = lim (@] Fn) for some z € X.

n—oo
| Fn|

Note. Here X can be any kind of subshift:
1-sided or 2-sided, effectively closed or closed,
1-dimensional or d-dimensional.

Remark. Here ent(X) denotes entropy,

ent(X) = lim 092 [12[Fn | 2 € X}|

This is known to be a conjugacy invariant.
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Remark. The proof of this theorem involves
ergodic theory (Shannon/McMillan/Breiman,
the Variational Principle, etc.) plus a
combinatorial argument which is similar to
the proof of the Vitali Covering Lemma.

Remark. So far as I can tell, everything in
the theorem is new, except the following old
result due to Furstenberg: dim(X) = ent(X)
provided X is one-sided and 1-dimensional.
The proof of this special case is much easier.

Remark. The above theorem is an outcome
of my discussions at Penn State over the past
several months with many people including
John Clemens, Michael Hochman, Daniel
Mauldin, Jan Reimann, and Alexander Shen.

THE END.

THANK YOU!
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