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A 1-dimensional dynamical system is an

ordered pair (Y, T) where T : Y → Y . The

elements of the set Y are the states of the

system, and T is the state transition function.

Given a state y ∈ Y , the orbit or trajectory of

y is the sequence Tny, n = 0,1,2, . . .. One

considers the behavior of Tny as n goes to

infinity.

Often one assumes that Y is a compact

Polish space and T is a homeomorphism of Y

onto Y . Thus for each y ∈ Y one can

consider the biinfinite trajectory Tny, n ∈ Z.

Given a partition C1, . . . , Ck of Y , define

X ⊆ {1, . . . , k}Z by

X = {x | (∃y ∈ Y ) (∀n ∈ Z) (Tny ∈ Cx(n))}.

Thus x is the “trace” or “code” of y in the

symbolic system (X, S). Here S : X → X is

the shift operator given by

(Sx)(n) = x(n + 1).
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If Y is compact and C1, . . . , Ck are closed

subsets of Y , then X is a compact subset

of {1, . . . , k}Z.

We think of (X, S) as

a symbolic representation of (Y, T).

Thus symbolic dynamical systems are useful

in the study of arbitrary dynamical systems.

∗ ∗ ∗ ∗ ∗

All of the concepts above can be generalized,

replacing Z by an arbitrary group G. In this

talk we always assume that G is computable.

Many results concern the d-dimensional case,

G = Zd. However, some results hold for an

arbitrary computable group G.
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Let A = {a1, . . . , ak} be an alphabet,

i.e., a finite set of symbols.

Let G be a computable group.

We write AG = {x | x : G → A}.

Let σ, τ, . . . range over functions σ : F → A
where F = dom(σ) is a finite subset of G.

The set of such functions is denoted AG
∗ . For

σ ∈ AG
∗ let

Nσ = {x ∈ AG | x ↾ dom(σ) = σ}.

The Nσ’s are a basis for the standard product

topology on AG. Thus C ⊆ AG is topologically

closed if and only if C = AG \
⋃

σ∈D Nσ for

some D ⊆ AG
∗ . If D is computable, we say

that C is effectively closed, i.e., Π0
1.

The shift action S of G on AG is given by

(Sgx)(h) = x(gh) for all x ∈ AG and g, h ∈ G.

A G-subshift is a set X ⊆ AG which is

nonempty, topologically closed, and closed

under the action of G, i.e., x ∈ X implies

Sgx ∈ X.
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We write

Seq(x) = {σ ∈ AG
∗ | ∃g (xg ↾ dom(σ) = σ)}.

This notation is inspired by the book Ramsey

Theory by Graham, Rothschild and Spencer.

Given E ⊆ AG
∗ let

XE = {x ∈ AG | Seq(x) ∩ E = ∅}

provided this set is nonempty.

Clearly XE is a subshift.

We say that the subshift XE is defined by a

set of excluded configurations, E.

It is known that any subshift is defined by a

set of excluded configurations. In other

words, given a subshift X we can find E ⊆ AG
∗

such that X = XE.
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If E is finite, we say that XE is

of finite type.

If E is computable, we say that XE is

of computable type.

It can be shown that a subshift is

of computable type if and only if

it is effectively closed.

It is known that most or all subshifts which

arise in practice are of computable type. Here

is a precise general result.

Theorem 1. Let G act effectively on an

effectively closed, effectively totally bounded

set Y in an effectively presented complete

separable metric space. For each a ∈ A let Ca

be an effectively closed subset of Y . Let

E = {σ | ¬(∃y ∈ Y ) (∀g ∈ dom(σ)) (Sgy ∈ Cx(g))}.

If XE 6= ∅ then XE is of computable type.
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Let P(X) be the problem of finding a point

of X. We have the following theorem.

Theorem 2 (Michael Hochman, 2008). If X

is of computable type and minimal (i.e., every

orbit is dense), then P(X) is algorithmically

solvable.

Proof. Write Seq(X) =
⋃

x∈X Seq(x).

Because X is minimal, we have

(∀x, y ∈ X) ∀F ∃g (xg ↾ F = y ↾ F),

i.e.,

(∀x, y ∈ X) ∀F ∀g ∃h (xg ↾ F = yh ↾ F),

i.e.,

(∀x, y ∈ X) (Seq(x) = Seq(y)).

Thus

σ ∈ Seq(X) ⇔ (∀x ∈ X) (σ ∈ Seq(x))

⇔ ∀x (x ∈ X ⇒ ∃g (xg ↾ dom(σ) = σ))
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and a Tarski/Kuratowski computation shows

that Seq(X) is Σ0
1, i.e., it is the range of a

computable sequence. On the other hand,

σ ∈ Seq(X) ⇔ (∃x ∈ X) ∃g (xg ↾ dom(σ) = σ)

⇔ ∃y (y ∈ X ∧ y ↾ dom(σ) = σ)

and a Tarski/Kuratowski computation shows

that Seq(X) is Π0
1, i.e., it is the complement

of a Σ0
1 set. It follows that Seq(X) is ∆0

1, i.e.,

computable. Now fix a computable sequence

of finite sets ∅ = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · ·

with
⋃∞

n=0 Fn = G. Starting with σ0 = ∅ and

given σn ∈ Seq(X) with dom(σn) = Fn, search

for σn+1 ∈ Seq(X) extending σn with

dom(σn+1) = Fn+1. Finally x =
⋃∞

n=0 σn is a

point of X and is computable, Q.E.D.

Remark. Theorems 1 and 2 hold more

generally, when G is a recursively presented

semigroup with identity.
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If G = Zd we say that X is d-dimensional.

We now consider 1-dimensional subshifts, i.e.,

G = Z.

Theorem 3 (“classical”). If X is

1-dimensional of finite type, then X contains

periodic points.

Corollary. If X is 1-dimensional and of finite

type, then P(X) is algorithmically solvable.

Theorem 4 (Cenzer/Dashti/King, 2006). If

X is 1-dimensional of computable type, then

P(X) can be algorithmically unsolvable.

Theorem 5 (Joseph S. Miller, 2008). If X is

1-dimensional of computable type, then P(X)

can have any desired degree of unsolvability.

This immediately implies the theorem of

Cenzer/Dashti/King.
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Restatement of Miller’s theorem:

Given a nonempty effectively closed set

C ⊆ {0,1}N, we can find a 1-dimensional

subshift X ⊆ {0,1}Z of computable type, plus

computable functionals Φ : C → X and

Ψ : X → C.

Proof of Miller’s theorem. We write

{0,1}∗ =
⋃∞

n=0{0,1}n = {finite strings of 0’s

and 1’s}. For s ∈ {0,1}∗ define as, bs ∈ {0,1}∗

by induction on the length of s as follows.

Start with a∅ = 0 and b∅ = 1. Given as and bs

define

as0 = asasasasbs, as1 = asasasbsbs,

bs0 = asasbsbsbs, bs1 = asbsbsbsbs

and note that as is the middle fifth of as0 and

as1 while bs is the middle fifth of bs0 and bs1.
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Given C ⊆ {0,1}N let QC =
⋃

z∈C Qz ⊆ {0,1}Z

where

Qz = {x | ∀n (x is made of az↾n’s and bz↾n’s)}.

It is straightforward to show that if C is

nonempty and effectively closed then QC is a

subshift of computable type. Moreover, we

have computable functionals Φ : C → QC and

Ψ : QC → C given by Φ(z) =
⋃∞

n=0 az↾n and

Ψ(x) = the unique z ∈ C such that x ∈ Qz.

Thus, letting X = QC, we have the desired

result, Q.E.D.

Remark. For each z ∈ {0,1}N, Qz is a

minimal subshift. Thus QC is a dynamical

system with the property that the closure of

every orbit is minimal. This property of

dynamical systems is somewhat unusual.
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Now for the 2-dimensional case, G = Z × Z.

Theorem 6 (Berger, 1965). If X is

2-dimensional of finite type, then X can be

aperiodic, i.e., it has no periodic points.

Theorem 7 (Myers, 1974). If X is

2-dimensional of finite type, then P(X) can

be algorithmically unsolvable.

Theorem 8 (Simpson, 2007). If X is

2-dimensional of finite type, then P(X) can

have any desired degree of unsolvability.

In other words, given a nonempty effectively

closed set C ⊆ {0,1}N, we can find a

2-dimensional subshift X ⊆ {0,1}Z×Z of finite

type along with computable functionals

Φ : C → X and Ψ : X → C.

This immediately implies Myers’s theorem,

which immediately implies Berger’s theorem.

The proofs of these theorems concerning

2-dimensional subshifts of finite type are

rather difficult. Cf. tilings of the plane.

12



Remark. Hochman and Meyerovitch have

proved that a positive real number is the

entropy of a 2-dimensional subshift of finite

type if and only if it is the limit of a

computable descending sequence of rational

numbers.

Remark. An interesting research program is

as follows. Given a 2-dimensional subshift of

finite type, to correlate its dynamical

properties with its degree of unsolvability.

Remark. My recent research on mass

problems shows that there are many specific,

natural degrees of unsolvability here. See also

the next slide, where Ew is the lattice of weak

degrees of nonempty Π0
1 subsets of 2N.

Remark. Theorem 8 says that Ew is the

same as the lattice of weak degrees of

2-dimensional subshifts of finite type.
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A picture of Ew. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, q =

dimension, d = diagonal nonrecursiveness.
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In classifying dynamical systems, the

discovery of new invariants is extremely

important. For instance, Kolmogorov

introduced the entropy invariant in order to

prove that the (1/2,1/2)-Bernoulli shift and

the (1/3,1/3,1/3)-Bernoulli shift are not

measure-theoretically isomorphic.

Let X be a d-dimensional subshift of

computable type. Then deg(X), the degree

of unsolvability of the problem P(X), is a

topological invariant of X which appears to

be new and different.

Compare deg(X) with ent(X), the

topological entropy of X. Both deg(X) and

ent(X) represent bounds on the complexity of

the orbits of X, but these bounds are quite

different. Namely, ent(X) is an upper bound

(cf. the work of Lutz/Hitchcock/Mayordomo

on effective Hausdorff dimension), while

deg(X) is a lower bound.
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Degrees of unsolvability.

Following Simpson 1999, let Ew be the lattice

of degrees of unsolvability associated with

nonempty, effectively closed sets in {0,1}∞.

Many interesting degrees in Ew are related to

Kolmogorov complexity. For instance:

d = deg({f | f is DNR}).

dC = deg({f | f is DNR and C-bounded}).

dREC = deg({X | X is complex}).

qs = deg({X | dim(X) > s}).

b1 = deg({X | 0′ ≤LR X}) where 0′ is

the halting problem for Turing machines.

bα = deg({X | 0(α) ≤LR X}) where 0(α) is

the αth iterate of the Turing jump operator.

r1 = deg({X | X is random}).

r2 = deg({X | X is random relative to 0′}).

1 = deg({f | f is DNR and 2-bounded})

= deg({T | T is a completion of PA}).
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Tiling problems (Wang, 1961).

Let F be a finite set of tiles, i.e., 1 × 1
squares with colored edges. Let PF be the
tiling problem associated with F , i.e, the
problem of covering the Euclidean plane with
disjoint copies of tiles from F in such a way
that adjacent edges have matching colors.

Example. Let F be this set of four tiles:

a b c d

Then PF is the problem of covering the plane
with 2 × 1 and 1 × 2 rectangles

a b and c

d
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Example (continued).

The tiling problem PF has many solutions:
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Here are some theorems showing that tiling

problems can be very difficult to solve.

Theorem (Berger, 1966). We can construct

a tiling problem PF which has solutions but

no periodic solution.

Theorem (Myers, 1974). We can construct

a tiling problem PF which has solutions but

no computable solution.

Theorem (Durand/Romashchenko/Shen,

2008). We can construct a tiling problem

with the following property. PF has solutions,

but K(S) ≥ O(n) − O(1) for any n × n square

S in any solution of PF .

Note: O(n) − O(1) is best possible.
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Here is another theorem in this vein.

Theorem (Simpson, 2007).

Let PF be a tiling problem which has

solutions. Then, the degree of unsolvability

of PF belongs to Ew. Conversely, each degree

in Ew is the degree of a tiling problem.

My paper proving this result has been

accepted for publication in the journal

Ergodic Theory and Dynamical Systems.

Remark. The study of tiling problems is

essentially the same as 2-dimensional

symbolic dynamics. Given a tiling problem

PF , the solution set SF is either empty or

a 2-dimensional shift space of finite type.

Conversely, each 2-dimensional shift space

of finite type is equivalent to the solution set

of a tiling problem.
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Current research.

One of my research projects is

to study the relationship between

the degree of unsolvability of PF and

the classical dynamical properties of

the dynamical system SF .

An classically important invariant of

dynamical systems is entropy.

A less well-studied invariant is

degree of unsolvability.

Both of these invariants measure the

complexity of orbits in a dynamical system.

The entropy is an upper bound, while the

degree of unsolvability is a lower bound.

My pending NSF research proposal is entitled

Mass Problems and Symbolic Dynamics.
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Related activities.

I have given several talks on these ideas to

dynamical systems audiences at Penn State

and the University of Maryland.

In January 2009 I organized a session on

Logic and Dynamical Systems at the Joint

Mathematics Meetings in Washington, DC.

In February 2010 I will participate in a

workshop on Dynamics and Computation

at CIRM in Marseille, France. As part of the

workshop I will lead a session on degrees of

unsolvability and symbolic dynamics.

THE END.

THANK YOU!
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