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Let A be an alphabet, i.e., a finite set of

symbols. Let G be a computable group. We

write AG = {x | x : G → A}.

Let σ, τ, . . . range over functions σ : F → A

where F = dom(σ) is a finite subset of G.

The set of such functions is denoted AG
∗ . For

σ ∈ AG
∗ let

Nσ = {x ∈ AG | x ↾ dom(σ) = σ}.

The Nσ’s are a basis for the standard product

topology on AG. Thus C ⊆ AG is topologically

closed if and only if C = AG \
⋃

σ∈S Nσ for

some S ⊆ AG
∗ . If S is computable, we say that

C is effectively closed or Π0
1.

The action of G on AG is given by

xg(h) = x(gh) for all x ∈ AG and g, h ∈ G. A

G-subshift is a set X ⊆ AG which is nonempty,

topologically closed, and closed under the

action of G, i.e., x ∈ X implies xg ∈ X.
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We write

Seq(x) = {σ ∈ AG
∗ | ∃g (xg ↾ dom(σ) = σ)}.

This notation is inspired by the book Ramsey

Theory by Graham, Rothschild and Spencer.

Given E ⊆ AG
∗ let

XE = {x ∈ AG | Seq(x) ∩ E = ∅}

provided this set is nonempty. Clearly XE is a

subshift. We say that the subshift XE is

defined by a set of excluded configurations,

E. If E is finite, we say that XE is of finite

type. If E is computable, we say that XE is

of computable type. It can be shown that a

subshift is of computable type if and only if it

is effectively closed.
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It is well known that any subshift is defined

by a set of excluded configurations. In other

words, given a subshift X we can find E ⊆ AG
∗

such that X = XE. It can be shown that

most or all subshifts which arise in practice

are of computable type. Here is a precise

general result.

Theorem 1. Let G act effectively on an

effectively closed, effectively totally bounded

set Y in an effectively presented complete

separable metric space. For each a ∈ A let Ca

be an effectively closed subset of Y . Let

E = {σ | ¬(∃y ∈ Y ) (∀g ∈ dom(σ)) (yg ∈ Cx(g))}.

If XE 6= ∅, then XE is a subshift of

computable type.
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Let P(X) be the problem of finding a point

of X. We have the following theorem.

Theorem 2 (Michael Hochman, 2008). If X

is of computable type and minimal (i.e., every

orbit is dense), then P(X) is algorithmically

solvable.

Proof. Write Seq(X) =
⋃

x∈X Seq(x).

Because X is minimal, we have

(∀x, y ∈ X) ∀F ∃g (xg ↾ F = y ↾ F),

i.e.,

(∀x, y ∈ X) ∀F ∀g ∃h (xg ↾ F = yh ↾ F),

i.e.,

(∀x, y ∈ X) (Seq(x) = Seq(y)).

Thus

σ ∈ Seq(X) ⇔ (∀x ∈ X) (σ ∈ Seq(x))

⇔ ∀x (x ∈ X ⇒ ∃g (xg ↾ dom(σ) = σ))
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and a Tarski/Kuratowski computation shows

that Seq(X) is Σ0
1, i.e., it is the range of a

computable sequence. On the other hand,

σ ∈ Seq(X) ⇔ (∃x ∈ X) ∃g (xg ↾ dom(σ) = σ)

⇔ ∃y (y ∈ X ∧ y ↾ dom(σ) = σ)

and a Tarski/Kuratowski computation shows

that Seq(X) is Π0
1, i.e., it is the complement

of a Σ0
1 set. It follows that Seq(X) is ∆0

1, i.e.,

computable. Now fix a computable sequence

of finite sets ∅ = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · ·

with
⋃∞

n=0 Fn = G. Starting with σ0 = ∅ and

given σn ∈ Seq(X) with dom(σn) = Fn, search

for σn+1 ∈ Seq(X) extending σn with

dom(σn+1) = Fn+1. Finally x =
⋃∞

n=0 σn is a

point of X and is computable, Q.E.D.

Remark. Theorems 1 and 2 hold more

generally, when G is a recursively presented

semigroup with identity.
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If G = Zd we say that X is d-dimensional.

We now consider 1-dimensional subshifts, i.e.,

G = Z.

Theorem 3 (“classical”). Every

1-dimensional subshift of finite type contains

periodic points.

Corollary. If X is 1-dimensional and of finite

type, then P(X) is algorithmically solvable.

Theorem 4 (Cenzer/Dashti/King, 2006).

We can construct a 1-dimensional subshift X

of computable type such that P(X) is

algorithmically unsolvable.

Theorem 5 (Joseph S. Miller, 2008). If X is

1-dimensional of computable type, then P(X)

can have any desired degree of unsolvability.

This immediately implies the theorem of

Cenzer/Dashti/King.
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Restatement of Miller’s theorem:

Given a nonempty effectively closed set

C ⊆ {0,1}N, we can find a 1-dimensional

subshift X ⊆ {0,1}Z of computable type, plus

computable functionals Φ : C → X and

Ψ : X → C.

Proof of Miller’s theorem. We write

{0,1}∗ =
⋃∞

n=0{0,1}n = {finite strings of 0’s

and 1’s}. For s ∈ {0,1}∗ define as, bs ∈ {0,1}∗

by induction on the length of s as follows.

Start with a∅ = 0 and b∅ = 1. Given as and bs

define

as0 = asasasasbs, as1 = asasasbsbs,

bs0 = asasbsbsbs, bs1 = asbsbsbsbs

and note that as is the middle fifth of as0 and

as1 while bs is the middle fifth of bs0 and bs1.
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Given C ⊆ {0,1}N let QC =
⋃

y∈C Qy ⊆ {0,1}Z

where

Qy = {x | ∀n (x is made of ay↾n’s and by↾n’s)}.

It is straightforward to show that if C is

nonempty and effectively closed then QC is a

subshift of computable type. Moreover, we

have computable functionals Φ : C → QC and

Ψ : QC → C given by Φ(y) =
⋃∞

n=0 ay↾n and

Ψ(x) = the unique y ∈ C such that x ∈ Qy.

Thus, letting X = QC, we have the desired

result, Q.E.D.

Remark. For each y ∈ {0,1}N, Qy is a

minimal subshift. Thus QC is a dynamical

system with the property that the orbit

closure of every point is a minimal dynamical

system. This property of dynamical systems

is apparently somewhat unusual.
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Now for the 2-dimensional case, G = Z × Z.

Theorem 6 (Berger, 1965). We can

construct a 2-dimensional subshift of finite

type which has no periodic points.

Theorem 7 (Myers, 1974). We can

construct a 2-dimensional subshift X of finite

type such that P(X) is algorithmically

unsolvable.

Theorem 8 (Simpson, 2007). If X is

2-dimensional of finite type, then P(X) can

have any desired degree of unsolvability.

In other words, given a nonempty effectively

closed set C ⊆ {0,1}N, we can find a

2-dimensional subshift X ⊆ {0,1}Z×Z of finite

type along with computable functionals

Φ : C → X and Ψ : X → C.

This immediately implies Myers’s theorem,

which immediately implies Berger’s theorem.

The proofs of these theorems concerning

2-dimensional subshifts of finite type are

rather difficult.
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Remark. Hochman and Meyerovitch have

proved that a positive real number is the

entropy of a 2-dimensional subshift of finite

type if and only if it is the limit of a

computable descending sequence of rational

numbers.

Remark. An interesting research program is

as follows. Given a 2-dimensional subshift of

finite type, to correlate its dynamical

properties with its degree of unsolvability.

My recent research on mass problems shows

that there are many specific, natural degrees

of unsolvability here. See also the next slide,

where Pw is the lattice of weak degrees of

nonempty Π0
1 subsets of 2N. Theorem 8 says

that Pw is the same as the lattice of weak

degrees of 2-dimensional subshifts of finite

type.
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A picture of Pw. Here a = any r.e. degree,

h = hyperarithmeticity, r = randomness,

b = a.e. domination, q = dimension,

d = diagonal nonrecursiveness.
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In classifying dynamical systems, the

discovery of new invariants is extremely

important. For instance, Kolmogorov

introduced the entropy invariant in order to

prove that the (1/2,1/2)-Bernoulli shift and

the (1/3,1/3,1/3)-Bernoulli shift are not

measure-theoretically isomorphic.

Let X be a d-dimensional subshift of

computable type. Then deg(X), the degree

of unsolvability of the problem P(X), is a

topological invariant of X which appears to

be new and different.

Compare deg(X) with ent(X), the

topological entropy of X. Both deg(X) and

ent(X) represent bounds on the complexity of

the orbits of X, but these bounds are quite

different. Namely, ent(X) is an upper bound

(cf. the work of Lutz/Hitchcock/Mayordomo

on effective Hausdorff dimension), while

deg(X) is a lower bound.
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