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Abstract:

Informally, mass problems are similar to decision problems. The
difference is that, while a decision problem has only one solution,
a mass problem is allowed to have more than one solution. Many
concepts which apply to decision problems apply equally well to
mass problems. For instance, a mass problem is said to be
solvable if it has at least one computable solution. Also, one mass
problem is said to be reducible to another mass problem if, given
a solution of the second problem, we can use it to find a solution
of the first problem.

Many unsolvable mathematical problems are most naturally viewed
as mass problems rather than decision problems. For example, let
CPA be the problem of finding a completion of Peano Arithmetic.
A well-known theorem going back to Gödel and Tarski says that
CPA is unsolvable, in the sense that there are no computable
completions of Peano Arithmetic. Note that, in describing CPA as
a “problem” whose “solutions” are the completions of Peano
Arithmetic, we are implicitly viewing CPA as a mass problem
rather than a decision problem. This is because Peano Arithmetic
has many different completions, with many different Turing
degrees. There is no single Turing degree which can be said to
measure the amount of unsolvability which is inherent in CPA.

Formally, a mass problem is defined to be an arbitrary set of
Turing oracles, i.e., an arbitrary subset of the Baire space, ωω.
Let P and Q be mass problems. We say that P is solvable if P
has at least one recursive element. We say that P is Muchnik
reducible to Q if for all g ∈ Q there exists f ∈ P such that f is
Turing reducible to g. A Muchnik degree is an equivalence class
of mass problems under mutual Muchnik reducibility. The
Muchnik degrees are partially ordered in the obvious way, by
Muchnik reducibility. Under this partial ordering, it is
straightforward to show that the Muchnik degrees form a
complete distributive lattice. There is an obvious, natural
embedding of the upper semilattice of Turing degrees into the
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lattice of Muchnik degrees, obtained by mapping the Turing
degree of f to the Muchnik degree of the singleton set {f}.

The lattice of Muchnik degrees was first introduced by Albert
Muchnik (of Friedberg/Muchnik fame) in 1963. Subsequently
Muchnik degrees have been used to classify unsolvable problems
which arise in various areas of mathematics including symbolic
dynamics, algorithmic randomness, and model theory.

Let Dw be the lattice of all Muchnik degrees. Let Pw be the
sublattice of Dw consisting of the Muchnik degrees of mass
problems associated with nonempty Π0

1 subsets of the Cantor
space, {0,1}ω. Recent research beginning in 1999 has revealed
that Pw is mathematically rich and contains many specific, natural
Muchnik degrees corresponding to specific, natural mass problems
which are of great interest. For example, the top degree in Pw is
the Muchnik degree of CPA, the set of completions of Peano
Arithmetic. Other specific, natural Muchnik degrees in Pw are
closely related to various foundationally interesting topics such as
algorithmic randomness, reverse mathematics, hyperarithmeticity,
diagonal nonrecursiveness, almost everywhere domination,
subrecursive hierarchies, resource-bounded computational
complexity, and Kolmogorov complexity.

The purpose of this talk is to introduce Pw and to survey some
recent discoveries regarding specific, natural Muchnik degrees in
Pw.
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Motivation:

Let DT be the upper semilattice of all Turing

degrees, a.k.a., “degrees of unsolvability.”

In DT there are a great many specific,

interesting Turing degrees, namely

0 < 0′ < 0′′ < · · · < 0(α) < 0(α+1) < · · ·

where α runs through (a large initial segment

of) the countable ordinal numbers (depending

on whether V=L or not . . . ). See my paper

The hierarchy based on the jump operator,

Kleene Symposium, North-Holland, 1980.

Historically, the original purpose of DT

(Turing 1936, Kleene/Post 1940’s, 1950’s)

was to serve as a framework for classifying

unsolvable mathematical problems.
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In the 1950’s, 1960’s, and 1970’s, it turned

out that many specific, natural, well-known,

unsolvable mathematical problems are indeed

of Turing degree 0′:

• the Halting Problem for Turing machines

(Turing’s original example)

• the Word Problem for finitely presented

groups

• the Triviality Problem for finitely

presented groups, etc.

• Hilbert’s 10th Problem for Diophantine

equations

• and many others.
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In addition, the arithmetical hierarchy

0(n), n < ω

and the hyperarithmetical hierarchy

0(α), α < ωCK
1

have been useful in studying the foundations

of mathematics.

These hierarchies, based on iterating the

Turing jump operator, have been useful

precisely because of their ability to classify

unsolvable mathematical problems.

This aspect of DT is explored in my book

Subsystems of Second Order Arithmetic,

Springer-Verlag, 1999, which is the basic

reference on reverse mathematics.
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On the other hand, there are many
unsolvable mathematical problems which
do not fit into the DT framework at all.

For example, consider the following problem,
which we call CPA:

To find a complete, consistent theory
which includes Peano Arithmetic.

Note that CPA is a very natural problem, in
view of the Gödel Incompletness Theorem,
which says that Peano Arithmetic itself is
incomplete.

Moreover, by the work of Tarski, Gödel, and
Rosser, the problem CPA is “unsolvable” in
the sense that there is no computable,
complete, consistent theory which includes
Peano Arithmetic.

However (and this is the interesting point),
it is not possible to assign a specific Turing
degree (“degree of unsolvability”) to the
unsolvable problem CPA.
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CPA is this unsolvable problem:

To find a complete, consistent theory
which includes Peano Arithmetic.

Although CPA is unsolvable, there is no one
specific Turing degree associated to CPA.
Thus, the Turing degree framework fails to
classify CPA.

Digression: One may consider the Turing degree 0(ω).

It is reasonable to associate 0(ω) to True Arithmetic,

which is one particular, complete, consistent extension

of Peano Arithmetic. However, it is unreasonable to

associate 0(ω) to the problem CPA as a whole. This is

because, beyond True Arithmetic, there are many other

complete, consistent extensions of Peano Arithmetic.

Some of them even have Turing degree < 0′.

If we want to classify unsolvable problems
such as CPA, we need a different framework.

The appropriate framework is:

MASS PROBLEMS.
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Here are some more examples.

R1: To find an infinite sequence of 0’s and 1’s which is
random in the sense of Martin-Löf.

Rn: To find an infinite sequence of 0’s and 1’s which is
n-random, n = 1,2, . . ..

DNR: To find a function f which is
diagonally nonrecursive, i.e.,
f(n) 6= ϕ(1)

n (n) for all n.

DNRREC: To find a function f which is diagonally
nonrecursive and recursively dominated, i.e., there
exists a recursive function g such that f(n) < g(n)
for all n.

AED: To find a Turing oracle A which is almost
everwhere dominating, i.e., with probability 1,
every function which is computable from a
sequence of coin tosses is dominated by some
function which is computable from A.

Each of the problems R1, R2, . . . , DNR,
DNRREC, AED, . . . , is similar to the problem
CPA. In each case, the problem is unsolvable
(i.e., there is no computable solution), but
there is no one specific Turing degree that
can be attached to the problem.

9



In other words, each of the problems

CPA, R1, R2, . . . , DNR, DNRREC, AED, . . . ,

is an example of an unsolvable mass problem.

If we wish to classify unsolvable problems of
this kind, we need a concept of “degree of
unsolvability” which is more general than the
Turing degrees.

The appropriately generalized concept of
“degree of unsolvability” is:

WEAK DEGREES,

also known as

MUCHNIK DEGREES.

This concept of “degree of unsolvability” is
the one that has turned out to be most useful
for classification and comparison of specific,
natural, unsolvable mass problems.
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Mass problems (informal discussion):

A “decision problem” is the problem of
deciding whether a given n ∈ ω belongs to a
fixed set A ⊆ ω or not. To compare decision
problems, we use Turing reducibility. A ≤T B

means that A can be computed using an
oracle for B.

A “mass problem” is a problem with a not
necessarily unique solution. (By contrast, a
“decision problem” has only one solution.)

The “mass problem” associated with a set
P ⊆ ωω is the “problem” of computing an
element of P .

The “solutions” of P are the elements of P .

One mass problem is said to be “reducible”
to another if, given any solution of the
second problem, we can use it as an oracle to
compute a solution of the first problem.
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Rigorous definition:

Let P and Q be subsets of ωω.

We view P and Q as mass problems.

We say that P is weakly reducible to Q if

(∀Y ∈ Q) (∃X ∈ P) (X ≤T Y ) .

This is abbreviated P ≤w Q.

Summary:

P ≤w Q means that, given any solution of Q,

we can use it as an oracle to compute a

solution of P .
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Digression: weak vs. strong reducibility

Let P and Q be subsets of ωω.

1. P is weakly reducible to Q, P ≤w Q, if
for all Y ∈ Q there exists e such that {e}Y ∈ P .

2. P is strongly reducible to Q, P ≤s Q, if
there exists e such that {e}Y ∈ P for all Y ∈ Q.

Strong reducibility is a uniform variant of
weak reducibility. By a result of Nerode, there
is an analogy:

weak reducibility

Turing reducibility
=

strong reducibility

truth table reducibility
.

In this talk we deal only with weak
reducibility.

Historical note:

Weak reducibility is due to Muchnik 1963.

Strong reducibility is due to Medvedev 1955.
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The lattice Pw:

We focus on Π0
1 subsets of 2ω, i.e.,

P = {paths through T} where T is a recursive
subtree of 2<ω, the full binary tree of finite
sequences of 0’s and 1’s. Two of the earliest
pioneering papers on Π0

1 subsets of 2ω are by
Jockusch/Soare 1972.

We define Pw to be the set of weak degrees
of nonempty Π0

1 subsets of 2ω, ordered by
weak reducibility.

Basic facts about Pw:

1. Pw is a distributive lattice, with l.u.b.
given by P ×Q = {X ⊕ Y | X ∈ P, Y ∈ Q}, and
g.l.b. given by P ∪Q.

2. The bottom element of Pw is the weak
degree of 2ω.

3. The top element of Pw is the weak degree
of CPA = {completions of Peano Arithmetic}.
(see Scott/Tennenbaum, Jockusch/Soare).
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Weak reducibility of Π0
1 subsets of 2ω:

X Y

QP

P ≤w Q means:

(∀Y ∈ Q) (∃X ∈ P) (X ≤T Y ).

P, Q are given by infinite recursive subtrees of

the full binary tree of finite sequences of 0’s

and 1’s.

X, Y are infinite (nonrecursive) paths through

P, Q respectively.
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The lattice Pw (review):

A weak degree is an equivalence class of

subsets of ωω under the equivalence relation

P ≤w Q and Q ≤w P . The weak degrees have

a partial ordering induced by ≤w.

We define Pw to be the set of weak degrees

of nonempty Π0
1 subsets of 2ω, partially

ordered by weak reducibility.

Pw is a countable distributive lattice.

The bottom element of Pw is the weak

degree of 2ω.

The top element of Pw is the weak degree of

CPA = {completions of Peano Arithmetic}.
We use 1 to denote this weak degree.
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Embedding ET into Pw:

Theorem (Simpson 2002):

There is a natural embedding φ : ET → Pw.

(ET = the semilattice of Turing degrees of
r.e. subsets of ω. Pw = the lattice of weak
degrees of nonempty Π0

1 subsets of 2ω.)

The embedding φ is given by

φ : degT (A) 7→ degw(CPA ∪ {A}).
Note that CPA ∪ {A} is not a Π0

1 set.
However, it is of the same weak degree as a
Π0

1 set. This is already a nontrivial result.

The embedding φ is one-to-one and preserves
≤, l.u.b., and the top and bottom elements.

Convention: We sometimes identify ET with
its image in Pw. In particular, we sometimes
identify 0′, 0 ∈ ET with 1, 0 ∈ Pw, the top and
bottom elements of Pw.
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A picture of the lattice Pw:

Turing
degrees

the

1 = CPA = 0’

r. e.

��
��
��
��

��
��
��

��
��
��

0
ET is embedded in Pw. 0′ and 0 are the top
and bottom elements of both ET and Pw.
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Structural properties of Pw:

1. Pw is a countable distributive lattice.

Every countable distributive lattice is lattice

embeddable in every initial segment of Pw.

(Binns/Simpson 2001)

2. The Pw analog of the Sacks Splittting

Theorem holds. (Binns, 2002)

3. We conjecture that the Pw analog of the

Sacks Density Theorem holds.

These structural results for Pw are proved by

means of priority arguments, just as for ET .

4. Within Pw the degrees r1 and inf(r2, 1) are

meet irreducible and do not join to 1.

(Simpson 2002, 2004)

5. 0 is meet irreducible. (This is trivial.)
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Natural examples in Pw:

In the Pw context, we have discovered many

specific, natural degrees which are > 0 and

< 1.

The specific, natural degrees in Pw which we

have discovered are related to foundationally

interesting topics:

• algorithmic randomness,

• diagonal nonrecursiveness,

• reverse mathematics,

• subrecursive hierarchies,

• computational complexity

(PTIME, EXPTIME, . . . ),

• Kolmogorov complexity,

• hyperarithmeticity.
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degrees

the

d

r
1

2

d
REC

inf (r  ,1)

r. e.
Turing

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

1 = CPA = 0’

0

Note: Except for 0′ and 0, the r.e. Turing
degrees are incomparable with these specific,
natural degrees in Pw.
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Some specific, natural degrees in Pw:

rn = the weak degree of the set of n-random
reals.

d = the weak degree of the set of diagonally
nonrecursive functions.

dREC = the weak degree of the set of
diagonally nonrecursive functions which are
recursively dominated.

Theorem (Simpson 2002, Ambos · · · 2004):

In Pw we have

0 < d < dREC < r1 < inf(r2, 1) < 1.

Theorem (Simpson 2004):

1. r1 is the maximum weak degree of a Π0
1

subset of 2ω which is of positive measure.

2. inf(r2, 1) is the maximum weak degree of a
Π0

1 subset of 2ω whose Turing upward closure
is of positive measure.
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Structural properties of Pw:

1. Pw is a countable distributive lattice.

Every countable distributive lattice is lattice

embeddable in every initial segment of Pw.

(Binns/Simpson 2001)

2. The Pw analog of the Sacks Splittting

Theorem holds. (Stephen Binns, 2002)

3. We conjecture that the Pw analog of the

Sacks Density Theorem holds.

These structural results for Pw are proved by

means of priority arguments, just as for ET .

4. Within Pw the degrees r1 and inf(r2, 1) are

meet irreducible and do not join to 1.

(Simpson 2002, 2004)

5. 0 is meet irreducible. (This is trivial.)
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Another source of specific degrees in Pw:

almost everywhere domination.

Definition (Dobrinen/Simpson 2004):

B is almost everywhere dominating if, for

almost all X ∈ 2ω, each function ≤T X is

dominated by some function ≤T B.

Here “almost all” refers to the fair coin

measure on 2ω.

Randomness and a.e. domination are closely

related to the reverse mathematics of

measure theory.
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Some additional, natural degrees in Pw:

Let b1 = degw(AED) where

AED = {B | B is a. e. dominating}.

Let b2 = degw(AED×R1) where

R1 = {A | A is 1-random}.

Let b3 = degw(AED ∩R1).

Theorem (Simpson, 2006): In Pw we have:

• 0 < inf(b1, 1) < inf(b2, 1) < inf(b3, 1) < 1.

• inf(b1, 1) < some r.e. degrees < 0′.
• inf(b2, 1) | all r.e. degrees except 0, 0′.
• inf(b3, 1) > some r.e. degrees > 0.

The proof uses virtually everything that is
known about randomness and almost
everywhere domination (Cholak, Greenberg,
Miller, Binns, Kjos-Hanssen, Lerman,
Solomon, Hirschfeldt, Nies, . . . ).
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3inf(b ,1)

inf(b ,1)

inf (r  ,1)
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r. e.
Turing
degrees
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�

0

1 = CPA = 0’

Note that inf(b1, 1) and inf(b3, 1), unlike
inf(b2, 1), are comparable with some r.e.
Turing degrees other than 0′ and 0.
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Some additional, specific degrees in Pw:

Definition: dREC = the weak degree of the
set of recursively dominated DNR functions.

Theorem (Kjos-Hanssen/Merkle/Stephan):
dREC = the weak degree of

{A ∈ 2ω | (∃f ∈ REC) ∀n (K(A � n) > f−1(n))}.
Here K denotes Kolmogorov complexity.

Definition (Simpson 2004): dα = the weak
degree of the set of DNR functions
dominated by some f ∈ RECα. Here RECα is
the Wainer hierarchy, α ≤ ε0.

Theorem (Kjos-Hanssen/Simpson 2006):
dα = the weak degree of

{A | (∃f ∈ RECα) ∀n (K(A � n) > f−1(n))}.

Ambos-Spies/Kjos-Hanssen/Lempp/Slaman
2004 and Simpson 2005 have shown that in
Pw we have

r1 > d0 > d1 > · · · > dα > · · · > dREC.
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Some additional examples in Pw:

Definition:

d2 = the weak degree of the set of f ⊕ g such

that f is diagonally nonrecursive, and g is

diagonally nonrecursive relative to f . More

generally, define dn for all n ≥ 1. This can be

extended into the transfinite.

Theorem (A-S/K-H/L/S, Simpson):

In Pw we have

r1 > d0 > d1 > · · · > dα > · · · > dREC

and

d = d1 < d2 < · · · < dn < · · · < r1 .

We conjecture that dn is incomparable with

dα and with dREC. This would be another

example of specific, natural degrees in Pw

which are incomparable with each other.
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Index sets in Pw:

Here is a result indicating that Pw

partakes of hyperarithmeticity.

Let Pi, i ∈ ω be the standard enumeration

of all nonempty Π0
1 subsets of 2ω.

Let pi = degw(Pi).

By definition, Pw = {pi | i ∈ ω}.

Theorem (Cole/Simpson 2006):

The index set {i | pi = 1} is Π1
1 complete.

More generally:

Theorem (Cole/Simpson 2006):

For any j such that pj > 0, the index sets

{i | pi = pj} and {i | pi ≥ pj} are Π1
1 complete.

Problem: Characterize the j’s for which

{i | pi ≤ pj} is Π1
1 complete.
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Embedding hyperarithmeticity into Pw:

Definition (Cole/Simpson 2006):
A function f(n) is said to be
boundedly limit recursive in a Turing oracle A,
abbreviated f ∈ BLR(A), if there exist
an A-recursive approximating function f̃(n, s)
and a recursive bounding function f̂(n)
such that for all n, f(n) = lims f̃(n, s) and
|{s | f̃(n, s) 6= f̃(n, s + 1)}| < f̂(n).

Definition (Cole/Simpson 2006):
For α < ωCK

1 let h∗α = the weak degree of{
A | BLR(0(α)) ⊆ BLR(A)

}
.

Theorem (Cole/Simpson 2006):
In Pw we have

0 < inf(h∗1, 1) < inf(h∗2, 1) < · · ·
< inf(h∗α, 1) < inf(h∗α+1, 1) < · · · < 1

and these weak degrees are incomparable
with d, dREC, r1, inf(r2, 1) and all recursively
enumerable Turing degrees except 0 and 0′.
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The weak degrees inf(h∗α, 1), 1 ≤ α < ωCK
1 , are

incomparable with d, dREC, r1, inf(r2, 1), and

all r.e. Turing degrees except 0 and 0′.
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1 = CPA = 0’

A more comprehensive picture of Pw.
r = randomness, h = hyperarithmeticity,
b = almost everywhere domination,
d = diagonal nonrecursiveness, etc.

32



Definition. S ⊆ ωω is Σ0
3 if

S = {f ∈ ωω | ∃i∀m∃n R(i, m, n, f)}
for some recursive predicate R ⊆ ω3 × ωω.

Many interesting mass problems are Σ0
3.

Examples:

• R1 is Σ0
2.

• R2 is Σ0
3.

• DNR is Π0
1.

• DNRREC is Σ0
3.

• AED is Σ0
3.

33



The Embedding Lemma:

If S ⊆ ωω is Σ0
3 and if P ⊆ 2ω is nonempty Π0

1,
then degw(S ∪ P) ∈ Pw.

It follows that, for many Σ0
3 sets S ⊆ ωω,

degw(S) ∈ Pw.

Examples:

1. R1 = {X ∈ 2ω | X is 1-random}.
Since R1 is Σ0

2, it follows by the Embedding
Lemma that r1 = degw(R1) ∈ Pw.

2. R2 = {X ∈ 2ω | X is 2-random}.
Since R2 is Σ0

3, it follows that
inf(r2, 1) = degw(R2 ∪CPA) ∈ Pw.

3. D = {f ∈ ωω | f is diagonally nonrecursive}.
Since D is Π0

1, d = degw(D) ∈ Pw.

4. DREC = {f ∈ D | f is recursively
dominated}.
Since DREC is Σ0

3, dREC = degw(DREC) ∈ Pw.

5. Let A ⊆ ω be r.e. Since {A} is Π0
2,

degw({A} ∪CPA) ∈ Pw. This gives our
embedding of ET into Pw.
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The Embedding Lemma (restated):

Let S ⊆ ωω be Σ0
3. Let P ⊆ 2ω be nonempty

Π0
1. Then ∃ nonempty Π0

1 Q ⊆ 2ω such that
Q ≡w S ∪ P .

Proof (sketch). Step 1. By Skolem
functions, we may assume that S ⊆ ωω is Π0

1.

Step 2. We have S = {paths through TS},
P = {paths through TP}, where TS, TP are
recursive subtrees of ω<ω, 2<ω respectively.
May assume τ(n) ≥ 2 for all n < |τ |, τ ∈ TS.

Define Q = {paths through TQ}, where

TQ is the set of all ρ ∈ ω<ω of the form

ρ = σ0
a〈m0〉aσ1

a〈m1〉a · · ·a〈mk−1〉aσk

where
• σ0, σ1, . . . , σk ∈ TP ,

• 〈m0, m1, . . . , mk−1〉 ∈ TS,

• ρ(n) ≤ max(n,2) for all n < |ρ|.
One can show that Q ≡w S ∪ P .

Step 3. Q is Π0
1 and recursively bounded.

Hence, we can find Π0
1 Q∗ ⊆ 2ω such that Q∗

is recursively homeomorphic to Q. Done.
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Remark. The Embedding Lemma says that if
s is the weak degree (i.e., Muchnik degree) of
a Σ0

3 mass problem, then inf(s, 1) ∈ Pw, where
1 = degw(CPA) is the top degree in Pw. We
have seen that this provides a powerful
method of producing specific, natural degrees
in Pw. We now extend this method.

If s is the weak degree of a Σ0
3 set S, define

S′ = {X ′ | X ∈ S}
where X ′ is the Turing jump of X, and

S∗ = {Y | (∃X ∈ S) (BLR(X) ⊆ BLR(Y ))}.
Then S′ and S∗ are Σ0

3. Moreover, the weak
degrees of S′ and S∗ depend only on the weak
degree of S. Thus we have an “internal jump
operator” within Pw, given by

inf(s∗, 1) 7→ inf(s∗′∗, 1).
In essence, the Cole/Simpson embedding of
the hyperarithmetical hierarchy into Pw may
be viewed as iterating the “internal jump
operator” through the ordinals < ωCK

1 .
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Summary:

In this talk I have emphasized the many

specific, natural Muchnik degrees

which belong to Pw and are related to

foundationally interesting topics:

• algorithmic randomness

• reverse mathematics

• hyperarithmeticity

• almost everywhere domination

• diagonal nonrecursiveness

• subrecursive hierarchies

• resource-bounded computational complexity

• Kolmogorov complexity

These examples have been developed over

several years, from 1999 to the present.
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Two newer aspects of Pw are:

1. the use of Pw to classify 2-dimensional

dynamical systems of finite type

(Simpson 2007).

2. a negative result concerning the possible

use of Pw as a model of intuitionistic

propositional calculus (Simpson 2007).

This refers to the original motivation for mass

problems going back to papers of Kolmogorov

1932, Medvedev 1955, and Muchnik 1963.

These aspects will be explained in my talk

Recent Aspects of Mass Problems

next week. This will be part of the FRG

workshop on algorithmic randomness here at

the University of Chicago.
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