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S. Feferman, Systems of Predicative Analysis,

J. of Symbolic Logic, 29, 1964, pp. 1–30.

S. Feferman, Systems of Predicative Analysis,

II: Representations of Ordinals, J. of Symbolic

Logic, 33, 1968, pp. 193–220.

“Although we strongly believe that the

explications proposed in this paper for

the notion of predicative provability in

analysis are correct, we are not con-

vinced that the matter has been settled

conclusively by the results obtained so

far. It is premature to say just what

would constitute final evidence concern-

ing this question. We expect that this

will be revealed, at least in part, by fur-

ther study of the theories considered

here.” (page 29)
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Subsequent papers do not indicate that Fefer-

man has changed his mind about predicative

provability.

S. Feferman, Predicatively reducible systems

of set theory, in Axiomatic Set Theory, Proc.

Symp. Pure Math. vol. XIII, Part 2, Amer.

Math. Soc., Providence, 1974, pp. 11-32.

S. Feferman, A more perspicuous formal sys-

tem for predicativity, in Konstruktionen versus

Positionen, I, Walter de Gruyter, Berlin, 1979,

pp. 68–93.

S. Feferman, Reflecting on incompleteness, J.

of Symbolic Logic, 56, 1991, pp. 1–49.
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Rules versus axioms.

∆1
1 comprehension rule:

∀n ((∃X α(n,X)) ↔ (∀Y β(n, Y )))

∃Z ∀n (n ∈ Z ↔ ∃X α(n,X))

∆1
1 comprehension axiom:

(∀n ((∃X α(n,X)) ↔ (∀Y β(n, Y ))))

→ ∃Z ∀n (n ∈ Z ↔ ∃X α(n,X))

Here α and β are arithmetical formulas.
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Rules versus axioms.

hierarchy rule:

WO(<e)

∀X ∃Y H(<e,X, Y )

hierarchy axiom:

∀Z (WO(Z) → ∀X ∃Y H(Z,X, Y ))

WO(Z): Z is a well ordering.

H(Z,X, Y ): Y is a Turing jump hierararchy

along Z starting at X.
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Rules versus axioms.

transfinite induction rule:

WO(<e)

TI(<e, γ), γ arbitrary

transfinite induction axiom:

∀Z (WO(Z) → TI(Z, γ))

for arbitrary γ

TI(Z, γ): transfinite induction along Z with re-

spect to the formula γ.
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IR consists of the ∆1
1 comprehension rule + the

hierarchy rule + the transfinite induction rule.

ATR0 consists of the hierarchy axiom. It in-

cludes the ∆1
1 comprehension axiom. It is a

system with restricted induction and so does

not include the transfinite induction rule.

|IR| = |ATR0| = Γ0.

IR and ATR0 prove the same Π1
1 sentences.

IR and ATR0 have the same proof-theoretic strength.

THEMES OF THIS TALK:

1. IR explicates predicative provability, while

ATR0 explicates predicative reducibility.

2. ATR0 is much stronger than IR, model-

theoretically and, above all, mathematically.
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The minimum ω-model of IR is HYP(Γ0).

The minimum ω-model of the ∆1
1 comprehen-

sion axiom is HYP, i.e., LωCK1
∩ P(ω).

HYP is the intersection of all ω-models of ATR0.

ATR0 has no minimal ω-model.

ATR0 holds in any β-model.

HYP is the intersection of all β-models.

There is no minimal β-model.

8



A set-theoretic version of ATR0.

ATRset
0 = extensionality

+ foundation axiom:

∀x (x 6= ∅ → ∃u ∈ x (u ∩ x = ∅))
+ closure under F0−F8

(rudimentary functions)

+ axiom of infinity

+ ∀x (x is hereditarily countable)

+ axiom beta:

∀r (WF(r)→ ∃f (field(r) ⊆ dom(f)

∧∀u ∈ dom(f) (f(u) = {f(v) : 〈v, u〉 ∈ r}))) .

Theorem (Simpson). ATRset
0 is conservative

over ATR0. Actually, it is a definitional exten-

sion of ATR0, where well founded trees encode

hereditarily countable sets in the usual way.
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Π1∞-TI0 consists of the transfinite induction ax-

iom. It includes ATR0. Precisely, Σ1
1-TI0 =

ATR0 + Σ1
1-IND.

Π1
∞-TI0 is proof-theoretically stronger than IR

and ATR0.

|Π1
∞-TI0| = ϕεΩ+1(0) = the Howard ordinal.

Π1∞-TI0 has no minimal ω-model.

Π1
∞-TI0 holds in any β-model.

HYP is the intersection of all β-models.

There is no minimal β-model.
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Reverse mathematics of ATR0:

The following are equivalent over RCA0.

1. ATR0.

2. Every disjoint pair of analytic sets can be

separated by a Borel set.

3. The domain of a single-valued Borel set in

the plane is Borel.

4. Every uncountable closed (or analytic) set

has a perfect subset.

5. Clopen (or open) determinacy.

6. Clopen (or open) Ramsey theorem.
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7. For every countable bipartite graph, there

exists a König covering, i.e., a pair (C,M)

where C is a vertex covering, M is a match-

ing, and C consists of one vertex of each

edge in M .

This is a combined result of Aharoni/Ma-

gidor/Shore 1992 and Simpson 1994.

8. Comparability of countable well orderings.

9. Ulm theory for countable reduced Abelian

p-groups.



Open questions:

1. Is Fräıssé’s conjecture for countable linear

orderings provable in ATR0?

See papers by Marcone 1994 and Shore

1994.

2. A consequence of the Ulm theory:

If each of two countable reduced Abelian

p-groups is a direct summand of the

other, then they are isomorphic.

Is this statement equivalent to ATR0?

Note: Mathematically, IR seems no stronger

than arithmetical comprehension, and Π1∞-TI0
no stronger than ATR0.
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Aharoni/Magidor/Shore, On the strength of

König’s duality theorem for countable bipartite

graphs, J. of Combinatorial Theory, series B,

54, 1992, pp. 257–290.

Simpson, same title, J. of Symbolic Logic, 59,

1994, pp. 113–123.

R. Shore, On the strength of Fräıssé’s con-

jecture, in Logical Methods, Birkhäuser, 1993,

pp. 782–813.

A. Marcone, Foundations of BQO theory, Trans-

actions of the AMS, 345, 1994, pp. 641–660.
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My book on reverse mathematics is finally out!

Stephen G. Simpson

Subsystems of Second Order Arithmetic

Perspectives in Mathematical Logic

Springer-Verlag, 1998

XIV + 445 pages.

Order: 1-800-SPRINGER.

List price: $60.

Discount: 30 percent for ASL members;

mention promotion code S206.
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Impredicative Π0
2 combinatorial theorems.

1. A finite miniaturization (a la Kirby/Paris)

of the clopen Ramsey theorem:

Friedman/McAloon/Simpson, A finite combi-

natorial principle which is equivalent to the 1-

consistency of predicative analysis, in: Logic

Symposion I (Patras), edited by G. Metakides,

North-Holland, Amsterdam, 1982, pp. 197–

220.

2. Friedman’s work on Kruskal’s theorem:

Stephen G. Simpson, Nonprovability of cer-

tain combinatorial properties of finite trees,

in: Harvey Friedman’s Research in the Foun-

dations of Mathematics, North-Holland, Ams-

terdam, 1985, pp. 87–117.
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Definitions.

1. Let X be a finite set of positive integers. A

coloring of X is P(X) = C1∪C2 where C1 and

C2 are closed under initial segment. Y ⊆ X is

homogeneous if P(Y ) ⊆ C1 or P(Y ) ⊆ C2.

2. X is 0-dense if |X| ≥ 2 and |X| ≥ minX.

3. X is n+ 1-dense if for every coloring of X

there exists an n-dense homogeneous set.

Theorem (Friedman/McAloon/Simpson).

∀n ∃n-dense set

≡ uniform Π0
2 reflection for IR

≡ uniform Π0
2 reflection for ATR0
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3. A recent result of Friedman:

Definitions. A tree T is a finite poset with

a minimum element such that the predeces-

sors of each element are linearly ordered. The

height of x ∈ T is the number of predecessors

of x in T . The height of T is the maximum

height of an element of T . We say that T is of

degree ≤ k if each element of T has at most k

immediate successors.

T(≤ i) = {x ∈ T : height(x) ≤ i}.

T(i) = {x ∈ T : height(x) = i}.

T(> i) = {x ∈ T : height(x) > i}.
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Note that T(≤ i) is a subtree of T .

Consider the following statement.

For each k there exists n so large that

the following holds. If T is a tree of

height n and degree ≤ k, then there

exists 1 ≤ i ≤ n and an inf-preserving

embedding of T(≤ i) into T which car-

ries T(i) into T(> i).

Friedman 1998 showed that this statement is

equivalent to uniform Π0
2 reflection for Π1

2-TI0.
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