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Abstract. Beginning with ideas of Poincaré and Weyl, Feferman in the sixties un-

dertook a profound analysis of the predicativist foundational program. He presented

a subystem of second order arithmetic IR and argued convincingly that it represents

the outer limits of what is predicatively provable. Much later, Friedman introduced

another system ATR0 which is conservative over IR for Π1
1 sentences yet includes several

well known theorems of algebra, descriptive set theory, and countable combinatorics

that are not provable in IR. The proof-theoretic ordinal of both systems is Γ0. ATR0

has emerged as one of a handful of systems that are important for reverse mathematics.

From a foundational standpoint, we may say that IR represents predicative provabil-

ity while ATR0 represents predicative reducibility. Subsequently Friedman formulated

mathematically natural finite combinatorial theorems that are not only not predica-

tively provable but go beyond Γ0 and therefore are not predicatively reducible.

§1. IR and ATR0. In his first major work on systems of predicative analysis
[3, 4], Feferman introduces the system IR and proposes it as an explication of
predicative provability.

“Although we strongly believe that the explications proposed in this
paper for the notion of predicative provability in analysis are correct,
we are not convinced that the matter has been settled conclusively
by the results obtained so far. It is premature to say just what would
constitute final evidence concerning this question. We expect that
this will be revealed, at least in part, by further study of the theories
considered here.” (page 29)

In subsequent papers on predicative provability, Feferman does not back
away from this proposal. The systems that he introduces in [5, 6, 7] as expli-
cations of predicative provability are conservative over IR.
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In this paper I want to compare Feferman’s system IR [3, 4] with another
subsystem of second order arithmetic ATR0 due to Friedman [10]. We begin
by briefly reviewing the definitions of these systems.

§2. Rules Versus Axioms. Both IR and ATR0 are formal systems or the-
ories in the language of second order arithmetic. While ATR0 is easily defined
by means of a finite set of axioms, IR is more conveniently described in terms
of inference rules rather than axioms.

1. The ∆1
1 Comprehension Axiom:

(∀n ((∃X α(n, X)) ↔ (∀Y β(n, Y ))))

→ ∃Z ∀n (n ∈ Z ↔ ∃X α(n, X))

Here α and β are arithmetical formulas.
2. The ∆1

1 Comprehension Rule:

∀n ((∃X α(n, X)) ↔ (∀Y β(n, Y )))

∃Z ∀n (n ∈ Z ↔ ∃X α(n, X))

Here α and β are as above.
3. The Hierarchy Axiom:

∀Z (WO(Z) → ∀X ∃Y H(Z, X, Y ))

Here WO(Z) is a Π1
1 formula expressing that Z is a well ordering of the

integers, and H(Z, X, Y ) is an arithmetical formula expressing that Y is
a Turing jump hierararchy along Z starting at X .

4. The Hierarchy Rule:

WO(<e)

∀X ∃Y H(<e, X, Y )

Here <e is a primitive recursive linear ordering of the integers, and
WO(Z) and H(Z, X, Y ) are as above.

5. The Transfinite Induction Axiom:

∀Z (WO(Z) → TI(Z, γ))

Here WO(Z) is as above, γ is an arbitrary formula, and TI(Z, γ) expresses
transfinite induction along Z with respect to γ.

6. The Transfinite Induction Rule:

WO(<e)

TI(<e, γ)

Here <e and WO(Z) and TI(Z, γ) are as above.

We are now ready to define the systems IR and ATR0.
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1. IR consists of the ∆1
1 Comprehension Rule, the Hierarchy Rule, and the

Transfinite Induction Rule.
2. ATR0 consists of the Hierarchy Axiom. It is known that ATR0 includes

the ∆1
1 Comprehension Axiom. It is a system with restricted induction

(see Friedman [10]) and so does not include the Transfinite Induction
Rule.

§3. Model-Theoretic Properties of IR and ATR0. It is known that IR

and ATR0 are proof-theoretically similar:

1. They have the same proof-theoretic ordinal: |IR| = |ATR0| = Γ0.
2. IR and ATR0 prove the same Π1

1 sentences. In particular, they prove the
same arithmetical sentences.

3. IR and ATR0 have the same proof-theoretic strength.

These results are due to Friedman [11, §4]. The main point that we would like
to make here is that IR and ATR0 differ greatly in some other, very significant
respects. In particular:

1. IR explicates predicative provability, while ATR0 explicates predicative
reducibility.

2. ATR0 is much stronger than IR, model-theoretically and, above all, math-
ematically.

The following properties of the two systems indicate how different they are
from the model-theoretic point of view.

1. The minimum ω-model of IR is HYP(Γ0), i.e., LΓ0
∩ P (ω). This is a

relatively small initial segment of

HYP = {X ⊆ ω : X is hyperarithmetical},

i.e., L
ω

CK

1
∩ P (ω).

2. The minimum ω-model of the ∆1
1 Comprehension Axiom is HYP.

3. HYP is the intersection of all ω-models of ATR0.
4. ATR0 has no minimal ω-model.
5. ATR0 automatically holds in any β-model.
6. HYP is the intersection of all β-models.
7. There is no minimal β-model.

We can also compare IR and ATR0 with the perhaps more familiar system
Π1

∞-TI0 consisting of the Transfinite Induction Axiom. The latter system is
sometimes known as bar induction. Some model-theoretic properties:

1. Π1
∞-TI0 includes both IR and ATR0. The precise relationship to ATR0 is

that Σ1
1-TI0 = ATR0 + Σ1

1-IND (Simpson [22]).
2. Π1

∞-TI0 is proof-theoretically stronger than IR and ATR0.
3. |Π1

∞-TI0| = ϕεΩ+1
(0) = the Howard ordinal.

4. Π1
∞-TI0 has no minimal ω-model.

5. Π1
∞-TI0 automatically holds in any β-model.

6. HYP is the intersection of all β-models.
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7. There is no minimal β-model.

For proofs of the model-theoretic results mentioned above, see Chapters VII
and VIII of Simpson [26].

Remark 1. We see above that ATR0 and Π1
∞-TI0 are model-theoretically

stronger than IR, in that the ω-models are larger. One might think that
the greater strength comes from the fact that ATR0 and Π1

∞-TI0 deal with
arbitrary well orderings of the integers, and not only primitive recursive ones.
However, this is not the case. Letting ATR

−
0 be ATR0 with the Hierarchy Axiom

restricted to primitive recursive linear orderings, the above model-theoretic
results for ATR0 continue to hold for ATR

−
0 . Thus these results are seen to

have a certain robustness.

§4. A Set-Theoretic Version of ATR0. In [5] Feferman introduced a set-
theoretic version of IR. Subsequently Simpson [21] introduced a set-theoretic
version of ATR0 known as ATR

set
0 , defined by

ATR
set
0 = Axiom of Extensionality

+ Axiom of Foundation:

∀x (x 6= ∅ → ∃u ∈ x (u ∩ x = ∅))

+ closure under F0−F8, i.e., under rudimentary functions

+ Axiom of Infinity

+ ∀x (x is hereditarily countable)

+ Axiom Beta:

∀r (WF(r) → ∃f (field(r) ⊆ dom(f)

∧ ∀u ∈ dom(f) (f(u) = {f(v) : 〈v, u〉 ∈ r}))) .

It is shown in Simpson [21] (see also [26, §VII.3]) that ATR
set
0 is conservative

over ATR0. Actually, it is a definitional extension of ATR0, where well founded
trees encode hereditarily countable sets in the usual way.

§5. Reverse Mathematics of ATR0. As is well known, ATR0 is one of
the five basic systems of reverse mathematics. From Simpson [26, Chapter V]
we have:

Theorem 2. The following are equivalent over RCA0.

1. ATR0.
2. Every disjoint pair of analytic sets can be separated by a Borel set.
3. The domain of a single-valued Borel set in the plane is Borel.
4. Every uncountable closed (or analytic) set has a perfect subset.
5. Clopen (or open) determinacy.
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6. The clopen (or open) Ramsey Theorem.
7. For every countable bipartite graph, there exists a König covering, i.e.,

a pair (C, M) where C is a vertex covering, M is a matching, and C

consists of one vertex of each edge in M . (This is a combined result of
Aharoni/Magidor/Shore 1992 [1] and Simpson 1994 [25].)

8. Comparability of countable well orderings, i.e., well orderings of the in-
tegers.

9. The Ulm theory for countable reduced Abelian p-groups.

There are some interesting open questions concerning the reverse mathematics
aspect of ATR0.

1. Is Fräıssé’s conjecture for countable linear orderings provable in ATR0?
See [26, X.3.31] and Marcone 1994 [16] and Shore 1993 [19].

2. A well known consequence of the Ulm theory (see Kaplansky [14]) is:
If each of two countable reduced Abelian p-groups is a direct
summand of the other, then they are isomorphic.

Is this statement equivalent to ATR0? This question is due to Friedman
(see [26, V.7.7]). Some recent progress on this question is in Friedman
[9].

Remark 3. The reverse mathematics investigations of [26, Chapter V] seem
to indicate that, mathematically, IR is no stronger than ACA0 (arithmetical
comprehension), and Π1

∞-TI0 is no stronger than ATR0. Thus ATR0 is a much
better system than IR from the viewpoint of reverse mathematics.

§6. Impredicative Π0
2 Combinatorial Theorems. In the aftermath of

Paris/Harrington, it has been shown that certain mathematically appealing,
finite combinatorial theorems are not provable in IR or ATR0 or even stronger
systems. In particular, such theorems are neither predicatively provable nor
predicatively reducible. For a survey of this general area, see Simpson [24].
Recently Feferman [8] has cited some of these results in footnotes. We now
state some of these results.

6.1. An Impredicative Ramsey-Type Theorem. Friedman/McAloon/
Simpson 1982 [11] were the first to exhibit a mathematically natural, finite
combinatorial theorem which is not predicatively provable. To state their re-
sult, we need some definitions.

Definition 4. Let X be a finite set of positive integers.

1. A coloring of X is given by P (X) = C1∪C2, where C1 and C2 are closed
under initial segment. A set Y ⊆ X is said to be homogeneous for the
given coloring if either P (Y ) ⊆ C1 or P (Y ) ⊆ C2.

2. X is said to be 0-dense if |X | ≥ 2 and |X | ≥ min X . X is said to be (n+1)-
dense if for every coloring of X there exists an n-dense homogeneous set.

Theorem 5 (Friedman/McAloon/Simpson). The following statements are
pairwise equivalent over PRA.
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1. ∀n ∃n-dense finite set.
2. uniform Π0

2 reflection for IR.
3. uniform Π0

2 reflection for ATR0.

6.2. Friedman’s Work on Kruskal’s Theorem. Friedman has shown
that certain interesting combinatorial properties of finite trees are not provable
in IR and ATR0 and stronger systems. See the exposition in Simpson [23].

It turns out that there is a close connection between these results and recent
spectacular work in finite graph theory. Namely, Friedman/Robertson/Sey-
mour [12] have used them to show that the celebrated Robertson/Seymour
Graph Minor Theorem is not provable in Π1

1-CA0.

6.3. A Recent Result of Friedman. In order to state Friedman’s most
recent result along these lines, we first give the necessary definitions.

Definition 6.

1. A tree T is a finite poset with a minimum element such that the pre-
decessors of each element are linearly ordered. The height of x ∈ T is
the number of predecessors of x in T . The height of T is the maximum
height of an element of T . We say that T is of degree ≤ k if each element
of T has at most k immediate successors.

2. T (≤ i) = {x ∈ T : height(x) ≤ i}.
3. T (i) = {x ∈ T : height(x) = i}.
4. T (> i) = {x ∈ T : height(x) > i}.

Note that T (≤ i) is a subtree of T .

Now consider the following combinatorial statement concerning finite trees.

For each k there exists n so large that the following holds. If T is a
tree of height n and degree ≤ k, then there exists 1 ≤ i ≤ n and an
inf-preserving embedding of T (≤ i) into T which carries T (i) into
T (> i).

Friedman has recently shown that this statement is equivalent to uniform Π0
2

reflection for Π1
2-TI0. In particular, this statement of Friedman is true but not

provable in ATR0. See also Friedman’s contribution to this volume.
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[20] S. G. Simpson (editor), Logic and Combinatorics, Contemporary Mathematics,

American Mathematical Society, 1987, XI + 394 pages.
[21] Stephen G. Simpson, Set theoretic aspects of ATR0, [27], 1982, pp. 255–271.
[22] , Σ1

1
and Π1

1
transfinite induction, [27], 1982, pp. 239–253.

[23] , Nonprovability of certain combinatorial properties of finite trees, [13], 1985,
pp. 87–117.

[24] , Unprovable theorems and fast growing functions, [20], 1987, pp. 359–394.
[25] , On the strength of König’s duality theorem for countable bipartite graphs,

The Journal of Symbolic Logic, vol. 59 (1994), pp. 113–123.
[26] , Subsystems of Second Order Arithmetic, Perspectives in Mathematical

Logic, Springer-Verlag, 1999, XIV + 445 pages.
[27] D. van Dalen, D. Lascar, and T. J. Smiley (editors), Logic Colloquium ’80, Studies

in Logic and the Foundations of Mathematics, North-Holland, 1982, X + 342 pages.

E-mail : simpson@math.psu.edu

URL: http://www.math.psu.edu/simpson/

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, STATE COL-

LEGE, PA 16802, USA


