Degrees of unsolvability: a two-hour tutorial

Stephen G. Simpson
Department of Mathematics, Pennsylvania State University
Department of Mathematics, Vanderbilt University
http://www.math.psu.edu/simpson/
stephen.g.simpson@vanderbilt.edu
sgslogic@gmail.com

September 23, 2016

This is my abstract for Computability Theory and Foundations of Mathematics (CTFM 2016), Waseda University and Tokyo Institute of Technology, September 20–23, 2016.

Given a problem P, one associates to P a degree of unsolvability, denoted $\deg(P)$. Here $\deg(P)$ is a quantity which measures the "difficulty" of P, i.e., the amount of algorithmic unsolvability which is inherent in P. We focus on two degree structures: the semilattice of Turing degrees, \mathcal{D}_T , and its completion, $\mathcal{D}_w = \widehat{\mathcal{D}}_T$, the lattice of Muchnik degrees. We remark that \mathcal{D}_w gives rise to a natural recursion-theoretic interpretation of Kolmogorov's non-rigorous "calculus of problems." We emphasize the analogy between \mathcal{E}_T , the countable subsemilattice of \mathcal{D}_T consisting of the Turing degrees associated with recursively enumerable subsets of \mathbb{N} , and \mathcal{E}_w , the countable sublattice of \mathcal{D}_w consisting of the Muchnik degrees associated with nonempty Π_1^0 subsets of $\{0,1\}^{\mathbb{N}}$. We emphasize specific, natural degrees in \mathcal{D}_T , \mathcal{D}_w , and \mathcal{E}_w .