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The basic reference for reverse mathematics is my recently published book
Subsystems of Second Order Arithmetic [32]. The web site for the book is
www.math.psu.edu/simpson/sosoa/. This article is a write-up of some repre-
sentative open problems in reverse mathematics. It was originally a handout
for my 45-minute invited talk at the AMS-INS-SIAM conference Computability
Theory and Applications, June 13–17, 1999, Boulder, Colorado.
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1 Real Analysis and Topology

Much is known concerning reverse mathematics for real analysis and the topol-
ogy of complete separable metric spaces. Some of the inspiration for this comes
from recursive analysis [25] and Bishop-style constructivism [2]. We shall not
discuss those connections here, but see my book [32] for more information.

In Giusto/Simpson [11] we presented a rather thorough reverse mathematics
discussion of various notions of closed set, and of various forms of the Tietze
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extension theorem for real-valued continuous functions on closed sets, in com-
pact metric spaces. The purpose of this section is to call attention to one open
problem left over from that paper.

Let X be a compact metric space. For concreteness we may take X = [0, 1],
the unit interval. In RCA0 we define K ⊆ X to be closed if it is the complement
of a sequence of open balls; separably closed if it is the closure of a sequence
of points; located if the distance function d(x,K) exists as a continuous real-
valued function on X ; weakly located if the predicate d(x,K) > r is Σ0

1 (allowing
parameters, of course). C(X) denotes the separable Banach space of continuous
real-valued functions on X which have a modulus of uniform continuity. The
strong Tietze theorem for K is the statement that every φ ∈ C(K) extends to
some φ̃ ∈ C(X). See [11] for details.

Known results from [11] are:

(1) The strong Tietze theorem for closed, weakly located sets is provable in
RCA0.

(2) The strong Tietze theorem for separably closed sets is equivalent to WKL0

over RCA0.

There remain open questions concerning the status of

(3) the strong Tietze theorem for closed sets, and

(4) the strong Tietze theorem for closed, separably closed sets.

It is known from [11] that (3) and (4) are provable in WKL0 and not provable
in RCA0. There is a partial reversal: (3) or (4) implies the DNR axiom over
RCA0. We shall outline the proof of this below. But first we discuss the DNR
axiom.

The DNR axiom says: For every A ⊆ N there exists f : N → N which is
diagonally nonrecursive relative to A, i.e., f(n) 6= {n}A(n) for all n ∈ N. Here
N is the set of natural numbers. It would be possible to restate the DNR axiom
in a combinatorial way, not involving recursion theory, but we shall not do so
here.

The DNR axiom is known to be weaker than WKL0 (= RCA0 + weak König’s
lemma). Indeed, the DNR axiom is provable in the strictly weaker system
WWKL0 ( = RCA0 + weak weak König’s lemma) which arises in connection
with reverse mathematics for measure theory. (See [32, §X.1], [11], [4].) Because
of Kumabe’s result [21], it seems likely that the DNR axiom is strictly weaker
than WWKL0.

Recursion theorists can understand these variants of weak König’s lemma
in terms of separating sets, recursively bounded Π0

1 classes, etc. Thus there is
a close connection with Jockusch’s talk at this conference. In descending order
we have:

1. WKL0 is just RCA0 plus any of the following, relativized to arbitrary A ⊆
N:

2



(a) for every infinite recursive tree T ⊆ {0, 1}<N, there exists a path
through T .

(b) for every disjoint pair of r.e. sets, there exists a separating set.

(c) there exists a {0, 1}-valued DNR function, i.e., a function f : N →
{0, 1} such that f(n) 6= {n}(n) for all n ∈ N.

2. WWKL0 is just RCA0 plus either of the following, relativized to arbitrary
A ⊆ N:

(a) for every recursive tree T ⊆ {0, 1}<N such that

lim
n

|{σ ∈ T : lh(σ) = n}|
2n

6= 0

there exists a path through T .

(b) there exists a 1-random real (see Kučera [18, 19, 20]).

3. The DNR axiom is equivalent over RCA0 to the following, relativized to
arbitrary A ⊆ N:

(a) there exists a DNR function, i.e., a function f : N → N such that
f(n) 6= {n}(n) for all n ∈ N.

Unfortunately, we don’t know much about how to use the DNR axiom in math-
ematical arguments. Unlike WKL0 and WWKL0, the DNR axiom seems weak
and therefore difficult to apply.

We shall now end this section with an outline of the proof that the strong
Tietze theorem for closed, separably closed subsets of [0, 1] implies the DNR
axiom.

We may as well assume that weak König’s lemma fails. For each n let In
be the closed interval [1/22n+1, 1/22n]. Since weak König’s lemma fails, the
Heine/Borel covering lemma fails, so let (ank, bnk), k ∈ N, be a covering of
In by open intervals with no finite subcovering. We may assume that these
coverings are disjoint from one other.

If {n}(n) is defined, let sn be the least s such that {n}s(n) is defined, and
put

Jn = In \
sn⋃
k=0

(ank, bnk).

Let
K = {0} ∪

⋃
{Jn : {n}(n) is defined}.

It can be shown that K ⊆ [0, 1] is closed, separably closed, and not weakly
located.

Define a real-valued continuous function φ(x) = ±x on K, as follows. First
let pi(x), i ∈ N, be a fixed, one-to-one, recursive enumeration of Q[x], the ring of
polynomials with rational coefficients in one indeterminate, x. Using this, define
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φ(0) = 0 and, for {n}(n) = i and x ∈ Jn, φ(x) = x if |pi(z)− z| ≥ 1/22n+2 for
some z ∈ Jn, φ(x) = −x otherwise. It can be shown that φ ∈ C(K).

By the strong Tietze theorem for K, let φ̃ ∈ C([0, 1]) be an extension of
φ from K to all of [0, 1]. By Weierstrass polynomial approximation in RCA0,
let pin(x), n ∈ N, be a sequence of polynomials such that sup{|φ̃(x) − pin(x)| :
0 ≤ x ≤ 1} < 1/22n+2 for all n. It is not difficult to show that the function
f : N→ N given by f(n) = in is DNR.

By relativizing the above to an arbitrary A ⊆ N, we get a function that is
DNR relative to A. This completes the proof.

Note: Recursion theorists may want to view the above as a standard diagonal
construction leading to a recursive counterexample to (4). However, from the
viewpoint of reverse mathematics, there seems to be something unusual going
on here. Usually, a recursive counterexample leads to a reversal to ACA0 or
WKL0, but in this instance all we seem to get is a reversal to the DNR axiom.

2 Banach Space Theory

Regarding the reverse mathematics status of well known theorems of functional
analysis, much is known, but many questions remain.

For example, the open mapping theorem for separable Banach spaces is
known to be provable in a system called RCA+

0 which is of the same strength
as RCA0 and indeed conservative over RCA0 for Π1

1 sentences. But whether it
is provable in RCA0 or even WKL0 remains unknown. See Brown/Simpson [5],
Mytilinaios/Slaman [24], Simpson [31].

As another example, consider the Krein/Šmulian theorem for separable Ba-
nach spaces. This is a somewhat lesser known but still basic theorem of func-
tional analysis. It says that a convex set in the dual of a separable Banach
space is weak-∗-closed if and only if it is bounded-weak-∗-closed. It is known
from Humphreys/Simpson [16] that this statement is provable in ACA0, but the
exact strength is unknown.

3 Ramsey Theory

One indication of a bright future for reverse mathematics is that a number of out-
standing recursion theorists are gradually getting drawn in. Of the researchers
on Cholak’s computability theory home page, several have published papers on
reverse mathematics, including: Peter Cholak, Peter Clote, Rod Downey, Bill
Gasarch, Jeff Hirst, Carl Jockusch, Steffen Lempp, Richard Shore, Ted Sla-
man. A recent major contribution is the Cholak/Jockusch/Slaman paper [7] on
Ramsey’s theorem for pairs.

Ramsey theory is a large subject with many interesting results in addition
to the familiar Ramsey theorem. Moreover, there are important connections
between Ramsey theory and dynamical systems theory, especially topological
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dynamics and ergodic theory. For a survey of the area, see the monograph of
Graham/Rothschild/Spencer [12].

The purpose of this section is to mention some open problems regarding
reverse mathematics and Ramsey theory. Such problems may be especially
attractive, because Ramsey theory is a branch of mathematics where one could
expect to find statements of high logical strength.

Hindman’s Theorem

A famous and important Ramsey-type result is Hindman’s theorem:

For any coloring of N with finitely many colors, there exists an in-
finite set H ⊆ N such that all sums of finite subsets of H have the
same color.

Hindman’s theorem is well known to be closely related to the Auslander/Ellis
theorem in topological dynamics:

For every state x in a compact dynamical system, there exists a state
y which is proximal to x and uniformly recurrent.

(A compact dynamical system consists of a compact metric space X and a con-
tinuous function T : X → X . A state x ∈ X is said to be uniformly recurrent
if for all ε > 0 there exists m such that for all n there exists k < m such that
d(T n+kx, x) < ε. Two states x, y ∈ X are said to be proximal if for all ε > 0
there exist infinitely many n such that d(T nx, T ny) < ε.)

There has been a great deal of interest in the constructive or effective aspect
of Hindman’s theorem and the Auslander/Ellis theorem. Some of the known
proofs are highly set-theoretical and cannot even be formalized in second-order
arithmetic. For an extensive discussion, including several proofs of Hindman’s
theorem, see [12].

I conjecture that Hindman’s theorem and the Auslander/Ellis theorem are
equivalent to ACA0 over RCA0. The known partial results in this direction are
in Blass/Hirst/Simpson [3]. There we showed that Hindman’s theorem and the
Auslander/Ellis theorem are provable in ACA+

0 , which consists of ACA0 plus
“for all A ⊆ N, the ωth Turing jump A(ω) of A exists”. The proof of Hindman’s
theorem in ACA+

0 involves a delicate effectivization of Hindman’s original proof.
We also obtained a reversal by showing that Hindman’s theorem implies ACA0

over RCA0. The problem here is to close the gap between ACA0 and ACA+
0 .

Szemerédi’s Theorem

Another well known result of Ramsey theory is Van der Waerden’s theorem:

If N is colored with finitely many colors, then one of the colors
contains arithmetic progressions of arbitrary finite length.

Using a method of Shelah, Van der Waerden’s theorem is known to be provable
in RCA0. The so-called “density version” of Van der Waerden’s theorem is due
to Szemerédi:
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If A ⊆ N is such that

lim sup
n→∞

|A ∩ {1, . . . , n}|
n

> 0

then A contains arithmetic progressions of arbitrary finite length.

Essentially nothing is known about the strength of Szemerédi’s theorem. In
particular it is unknown whether Szemerédi’s theorem is provable in ACA0.

The Dual Ramsey Theorem

Let (N)k denote the set of partitions of N into exactly k nonempty pieces. Let
(N)∞ denote the set of partitions of N into infinitely many nonempty pieces.
For X ∈ (N)∞, (X)k is the set of all Y ∈ (N)k such that Y is coarser than X .
The dual Ramsey theorem of Carlson/Simpson [6] reads as follows:

If (N)k is colored with finitely many Borel colors, then there exists
X ∈ (N)∞ such that (X)k is monochromatic.

This also holds with k replaced by∞. There are some important generalizations
of this due to Carlson. This kind of result has been used by Furstenberg and
Katznelson to obtain a “density version” of the Hales/Jewett theorem. For
references, see my book [32, remark X.3.6].

There are many open problems concerning the strength of the dual Ramsey
theorem and related theorems. Slaman [34] has shown that the dual Ramsey
theorem is provable in Π1

1-CA0. No interesting reversal is known.
Let A be a fixed finite alphabet. A∗ denotes the set of words, i.e., finite

strings of elements of A. An infinite variable word is an infinite string W of
elements of A ∪ {xn : n ∈ N} such that each xn occurs at least once, and all
occurrences of xn precede all occurrences of xn+1, for all n. If s = a0 · · · an−1 ∈
A∗, we denote by W (s) the word which results from W upon replacing all
occurrences of xm by am for each m < n, then truncating just before the first
occurrence of xn. A key lemma of Carlson/Simpson [6] reads as follows:

If A∗ is colored with finitely many colors, then there exists an in-
finite variable word W such that W (A∗) = {W (s) : s ∈ A∗} is
monochromatic.

The strength of this lemma is unknown. In particular, it is unknown whether
this lemma is true recursively, i.e., whether W can be taken to be recursive in
the given coloring. For more background on this problem, see Simpson [30].

4 WQO Theory

We now turn from Ramsey theory to another important branch of combinatorics:
WQO theory. Like Ramsey theory, WQO theory is of special interest from the
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viewpoint of reverse mathematics, because many of the proofs seem to need
unusually strong set existence axioms.

A quasiordering is a set Q together with a reflexive, transitive relation ≤ on
Q. A well quasiordering (abbreviated WQO) is a quasiordering such that for
every function f : N → Q there exist m,n ∈ N such that m < n and f(m) ≤
f(n). Let [N]∞ be the space of infinite subsets of N. A better quasiordering
(abbreviated BQO) is a quasiordering such that for every Borel function f :
[N]∞ → Q there exists X ∈ [N]∞ such that f(X) ≤ f(X \ {min(X)}). It can
be shown that every BQO is a WQO but not conversely.

Generally speaking, WQO theory is an appropriate tool when considering
quasiorderings of finite structures, but BQO theory is better adapted to infinite
structures. For example, a famous theorem of WQO theory is Kruskal’s theorem:

Finite trees are WQO under embeddability.

(Here a tree is a connected acyclic graph, and embeddings are required to take
vertices to vertices, and edges to paths.) Kruskal’s theorem has been generalized
to infinite trees, but the proof is much more difficult and involves BQO theory.
Detailed references are in [32, §X.3].

There are some important results about the strength of various theorems of
WQO theory. For instance, Friedman (see Simpson [29]) showed that Kruskal’s
theorem is not provable in ATR0, and he characterized exactly the strength of
Kruskal’s theorem, in proof-theoretic terms. This had remarkable consequences
for Friedman’s foundational program of finding mathematically natural, finite
combinatorial statements which are proof-theoretically strong.

Consider now the following generalization of Kruskal’s theorem, due to Kriz
[17]. Let T1 and T2 be finite trees where each edge is labeled with a positive
integer. Write T1 ≤ T2 to mean that there exists an embedding of T1 into T2

such that the label of each edge of T1 is less than or equal to the minimum
of the labels of the corresponding edges of T2. Kriz’s theorem says that this
quasiordering is a WQO.

What is the strength of Kriz’s theorem? By results of Friedman (see Simpson
[29]), Kriz’s theorem is at least as strong as Π1

1-CA0. It may be much stronger,
but little is known. This is an open problem which may have a big payoff.

We now consider a famous theorem of BQO theory. If Q is a countable
quasiordering, let Q̃ be the set of countable transfinite sequences of elements
of Q. Quasiorder Q̃ by putting s ≤ t if and only if there exists a one-to-one
order-preserving map f : lh(s)→ lh(t) such that s(i) ≤ t(f(i)) for all i < lh(s).
The Nash-Williams transfinite sequence theorem [28, 35] says that if Q is BQO
then Q̃ is BQO.

Marcone [23] has shown that the Nash-Williams theorem is provable in Π1
1-

CA0 but not equivalent to Π1
1-CA0. Shore [26] has shown that the Nash-Williams

theorem implies ATR0 over RCA0. There remains the problem of closing the
gap. We conjecture that the Nash-Williams theorem is provable in ATR0, hence
equivalent to ATR0 over RCA0.

Another famous theorem of BQO theory is Laver’s theorem [28, 35]:
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The set of all countable linear orderings is WQO (in fact BQO)
under embeddability.

The strength of Laver’s theorem is an open problem. Shore [26] has shown
that Laver’s theorem implies ATR0 over RCA0, and we conjecture that Laver’s
theorem is provable in ATR0.

5 Replacing RCA0 by a Weaker Base Theory

In all but section X.4 of my book [32], RCA0 is taken as the base theory for
reverse mathematics. That is to say, reversals are stated as theorems of RCA0.
An important research direction for the future is to replace RCA0 by weaker
base theories. In this way we can hope to substantially broaden the scope of
reverse mathematics, by obtaining reversals for many ordinary mathematical
theorems which are provable in RCA0.

A start on this has already been made. In Simpson/Smith [33] we defined
RCA∗0 to be the same as RCA0 except that Σ0

1 induction is weakened to Σ0
0

induction, and exponentiation of natural numbers is assumed. Thus RCA0 is
equivalent to RCA∗0 plus Σ0

1 induction. It turns out that RCA∗0 is conservative
over EFA (elementary function arithmetic) for Π0

2 sentences, just as RCA0 is
conservative over PRA (primitive recursive arithmetic) for Π0

2 sentences.
One project for the future is to redo all of the known results in reverse

mathematics using RCA∗0 as the base theory. The groundwork for this has
already been laid, but there are some difficulties. For example, we know that
Ramsey’s theorem for exponent 3 is equivalent to ACA0 over RCA0, but it unclear
whether RCA0 can be replaced by RCA∗0 . Other problems of this nature are listed
in my book [32, remark X.4.3].

Another project is to find ordinary mathematical theorems that are equiva-
lent to Σ0

1 induction over RCA∗0 . Several results of this kind are already known
and are mentioned in my book [32, §X.4]. For example, Hatzikiriakou [14] has
shown that the well known structure theorem for finitely generated Abelian
groups is equivalent to Σ0

1 induction over RCA∗0 .
A more visionary project would be to replace RCA∗0 by even weaker base the-

ories, dropping exponentiation and ∆0
1 comprehension. One could even consider

base theories that are conservative over the theory of discrete ordered rings. At
the present time, almost nothing is known about this.
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