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Abstract.

Let F be a finite mathematical object. For

instance, F could be an integer, or a finite

sequence of 0’s and 1’s, or a computer

program, or a finite graph, or a finite group.

Associated with F is a positive integer K(F),

the Kolmogorov complexity of F , which

measures the ”amount of information” in F ,

or the minimum length of a ”description” of

F . More precisely, the Kolmogorov

complexity of F is the minimum length of a

computer program P which describes F in the

sense that, if we run P with no inputs, then P
eventually halts with output F . In this talk

we define Kolmogorov complexity and prove

some of its basic properties. We also survey

some connections between Kolmogorov

complexity and various mathematical topics.

Among these topics are algorithmic

randomness, Hausdorff dimension, diagonal

noncomputability, degrees of unsolvability,

tilings of the plane, and 2-dimensional

symbolic dynamics.
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A bitstring is a finite sequence of 0’s and 1’s.

If ρ and σ are bitstrings, ρaσ denotes the

concatenation, ρ followed by σ. We write

|σ| = the length of σ. We use {0,1}∗ to

denote the set of bitstrings.

A machine is a partial recursive function from

bitstrings to bitstrings, M :⊆ {0,1}∗ → {0,1}∗.

Note that the domain of M , dom(M), is a

recursively enumerable set of bitstrings.

A universal machine is a machine U with the

following property: For all machines M there

exists a bitstring ρ such that U(ρaσ) ≃ M(σ)

for all bitstrings σ.

The existence of a universal machine is an

easy consequence of the Enumeration

Theorem for partial recursive functions.
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The Kolmogorov complexity of a bitstring τ
is defined as C(τ) = min{|σ| | U(σ) ≃ τ}
where U is a universal machine.

Note that C(τ) is well defined up to ±O(1).

In other words, if U1 and U2 are universal

machines and Ci(τ) = min{|σ| | Ui(σ) ≃ τ} for

i = 1,2, then |C1(τ) − C2(τ)| ≤ O(1) for all τ .

The Kolmogorov complexity of a positive

integer n is defined as C(n) = C(〈1, . . . ,1
︸ ︷︷ ︸

n

〉).

Let F be a finite mathematical object.

For instance, F could be a rational number, a

finite graph, a computer program, a formula,

a finite group, a hereditarily finite set, etc.

The Kolmogorov complexity of F is defined

as C(F) = C(#(F)) where #(F) is the Gödel

number of F .

Intuitively, C(F) is the size of the “shortest

description” of F , measured in bits. In other

words, the “amount of information” in F .
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For instance, let τ be a bitstring of length

1,000,000,000.

If τ consists entirely of 1’s, then τ is very

easy to describe, so C(τ) is quite small.

However, the vast majority of bitstrings τ of

length 1,000,000,000 are “random” and

therefore hard to describe, in the sense that

C(τ) is close to 1,000,000,000.

This is because, for a random τ of length

1,000,000,000, there is no good way to

describe τ except by listing all of the bits of τ

in order.
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Some easily proved facts are:

1. C(|τ |) ≤ C(τ) + O(1).

2. C(τ) ≤ |τ | + O(1).

3. C(τ1
aτ2) ≤ 2C(τ1) + 2C(τ2) + O(1).

It would be nice to improve 3 to say that

C(τ1
aτ2) ≤ C(τ1) + C(τ2) + O(1),

but unfortunately this is not the case.

In order to obtain such improvements, it is

convenient to consider a variant concept.

A machine M is said to be prefix-free if

dom(M) is prefix-free. In other words, there

do not exist bitstrings σ1 and σ2 such that

M(σ1) and M(σ2) are both defined and σ1 is

a proper initial segment of σ2.
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A universal prefix-free machine is

a prefix-free machine U with the following

property: For all prefix-free machines M

there exists a bitstring ρ such that

U(ρaσ) ≃ M(σ) for all bitstrings σ.

The existence of a universal prefix-free

machine can be proved.

The prefix-free Kolmogorov complexity of

a bitstring τ is K(τ) = min{|σ| | U(σ) ≃ τ}
where U is a universal prefix-free machine.

Just as in the case of C(τ), we can show that

K(τ) is well defined up to ±O(1).

We can now improve 3 to 3′:

3′. K(τ1
aτ2) ≤ K(τ1) + K(τ2) + O(1).

For positive integers n and finite

mathematical objects F , we define

K(n) and K(F) in the obvious way.
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Comparing C (“plain complexity”) with

K (“prefix-free complexity”), we have:

C(τ) ≤ K(τ) + O(1).

K(τ) ≤ C(τ) + K(C(τ)) + O(1).

K(τ) ≤ 2C(τ) + O(1).

K(τ) ≤ C(τ) + 2 logC(τ) + O(1).

K(τ) ≤ C(τ)+ logC(τ)+2 log logC(τ)+O(1).

Etc. Here log is the base 2 logarithm.

A useful technical lemma:

Let L be a recursively enumerable set of

ordered pairs (m, τ) where m is a positive

integer and τ is a bitstring.

Assume that
∑

(m,τ)∈L 1/2m < ∞.

Then K(τ) ≤ m + O(1) for all (m, τ) ∈ L.
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Complex infinite sequences.

Let X be an infinite sequence of 0’s and 1’s.

For each positive integer n, let X ↾ n be the

bitstring consisting of the first n bits of X.

We say that X is complex if there exists a

nontrivial, computable, lower bound on the

Kolmogorov complexity of X ↾ n.

More precisely, there exists a computable

function p : N → N such that K(X ↾ n) ≥ p(n)

for all n, and sup{p(n) | n ∈ N} = ∞.

Here N is the set of positive integers.

This means that, viewing X as a stream of

binary information, the bits of X are at least

somewhat difficult to predict.

In the above definition, it does not matter

whether we use prefix-free complexity, K, or

plain complexity, C.
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Lemma. X is complex if and only if

there exists a computable function q : N → N

such that K(X ↾ q(n)) ≥ n for all n.

Proof. The idea is that q = p−1.

More precisely, q(n) = the least m
such that p(m) ≥ n.

Again, we can use either K or C here.

An easy observation is:

Theorem. If X is complex, then X is not

computable.

Proof. Assume that X is computable.

Since q is computable, we clearly have

K(X ↾ q(n)) ≤ K(n) + O(1). It is also clear

that K(n) ≤ logn + O(1). Combining these

two observations, we have

K(X ↾ q(n)) ≤ logn + O(1), so let c be a

constant such that K(X ↾ q(n)) ≤ logn + c
for all n. Let n be so large that logn + c < n.

Then K(X ↾ q(n)) is both < n and ≥ n,

a contradiction, Q.E.D.
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Diagonal nonrecursiveness.

Consider a (non-computable) function

f : N → N. We say that f is diagonally

nonrecursive (DNR) if there is no computer

program P which eventually halts with output

f(#(P)). We say that f is recursively

bounded (RB) if there exists a computable

function q : N → N such that f(n) ≤ q(n) for

all n.

Theorem (Kjos-Hanssen/Merkle/Stephan,

2005). The following problems have the

same degree of unsolvability.

1. Find an f : N → N which is DNR and RB.

2. Find an X ∈ {0,1}∞ which is complex.

We omit the proof.

Note: Two problems S1 and S2 are said to

have the same degree of unsolvability if any

solution of S1 can be used as a Turing oracle

to compute a solution of S2 and vice versa.
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Hausdorff dimension and fractals.

Let X be an infinite sequence of 0’s and 1’s.

The effective dimension of X is defined as

dim(X) = lim inf
n→∞

K(X ↾ n)

n
.

Note that dim(X) is a real number in the

interval {r | 0 ≤ r ≤ 1}.
Again, we can use either K or C here.

Clearly dim(X) > 0 if and only if there is a

linear lower bound on K(X ↾ n). Thus

dim(X) > 0 implies that X is complex. In

fact, the complexity of X is rather high.

The space of all infinite sequences of 0’s and

1’s is denoted {0,1}∞. Topologically, {0,1}∞
is the product of infinitely many copies of the

two-point space {0,1}.

12



Recall that a set S ⊆ {0,1}∞ is said to be

closed if the limit of any convergent sequence

of points in S belongs to S. Equivalently, S is

the complement of an open set. Recall that

an open set is just the union of a sequence of

basic open sets in {0,1}∞.

A set S ⊆ {0,1}∞ is said to be

effectively closed if it is the complement of a

set which is effectively open, i.e., the union of

a computable sequence of basic open sets.

Theorem (Lutz/Mayordomo/. . . , 2000).

Assume that S is effectively closed. Then,

the Hausdorff dimension of S is equal to

sup{dim(X) | X ∈ S}.

A similar result can be proved for effectively

closed sets in Euclidean space. This includes

the familiar fractals in Euclidean space, e.g.,

the Sierpinski triangle. Thus we have:

Corollary. The Hausdorff dimension of a

fractal is equal to the supremum of the

effective dimensions of its points.
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Algorithmic randomness.

Let X be an infinite sequence of 0’s and 1’s.
We say that X is random if it behaves like a
sequence of coin tosses. More precisely:

Definition (Martin-Löf, 1966). Let µ be
the fair coin probability measure on {0,1}∞.
A point X ∈ {0,1}∞ is said to be random if
X ∈ ⋃∞

n=1 Sn whenever Sn, n = 1,2,3, . . . is a
computable sequence of effectively closed
sets such that µ(Sn) ≥ 1 − 1/2n for all n.

It can be shown that any X which is random
in the sense of Martin-Löf passes all effective
statistical tests for randomness. For instance,
X obeys the Strong Law of Large Numbers

lim
n→∞

X1 + · · · + Xn

n
=

1

2

and the Law of the Iterated Logarithm

lim sup
n→∞

|X1 + · · · + Xn − n/2|√
n log logn

=
1√
2

where log denotes the base e logarithm.
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Theorem (Schnorr, 1975).

The following properties are equivalent.

1. X is random in the sense of Martin-Löf.

2. K(X ↾ n) ≥ n − O(1) for all n.

Roughly speaking, Schnorr’s Theorem means

that X is random if and only if the bitstrings

X ↾ n are “asymptotically incompressible”.

In Schnorr’s Theorem it is important that we

are using prefix-free complexity, K, rather

than plain complexity, C.

We omit the proof of Schnorr’s Theorem.

Corollary. If X is random, then dim(X) = 1.

However, easy examples show that the

converse of the corollary is false.
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Relativized notions.

Let A be a Turing oracle. Relative to A
one may consider Kolmogorov complexity,

effectively closed sets, and randomness.

Define A ≤LR B to mean that every

X ∈ {0,1}∞ which is B-random is A-random.

In other words, B is at least as powerful as A
in terms of detecting nonrandomness.

Define A ≤LK B to mean that

KB(τ) ≤ KA(τ) + O(1) for all bitstrings τ .

In other words, B is at least as powerful as A
in terms of compressing information.

Theorem (Kjos-Hanssen/Miller/Solomon,

2005). A ≤LR B if and only if A ≤LK B,

if and only if every A-effectively closed set

of positive measure includes a B-effectively

closed set of positive measure.

Here again, it is important that we are using

K rather than C.
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Degrees of unsolvability.

Following Simpson 1999, let Ew be the lattice

of degrees of unsolvability associated with

nonempty, effectively closed sets in {0,1}∞.

Many interesting degrees in Ew are related to

Kolmogorov complexity. For instance:

d = deg({f | f is DNR}).
dC = deg({f | f is DNR and C-bounded}).
dREC = deg({X | X is complex}).
qs = deg({X | dim(X) > s}).
b1 = deg({X | 0′ ≤LR X}) where 0′ is

the halting problem for Turing machines.

bα = deg({X | 0(α) ≤LR X}) where 0(α) is

the αth iterate of the Turing jump operator.

r1 = deg({X | X is random}).
r2 = deg({X | X is random relative to 0′}).
1 = deg({f | f is DNR and 2-bounded})

= deg({T | T is a completion of PA}).
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A picture of Ew. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, q =

dimension, d = diagonal nonrecursiveness.
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Tiling problems (Wang, 1961).

Let F be a finite set of tiles, i.e., 1 × 1
squares with colored edges. Let PF be the
tiling problem associated with F , i.e, the
problem of covering the Euclidean plane with
disjoint copies of tiles from F in such a way
that adjacent edges have matching colors.

Example. Let F be this set of four tiles:

�

�

�

�

�

�

�

_______

a b c d

�

�

�

�

�

�

�

_ _ _ _ _ _ _

Then PF is the problem of covering the plane
with 2 × 1 and 1 × 2 rectangles

�

�

�

�

�

�

�

a b and c

_ _ _ _ _ _ _

d
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Example (continued).

The tiling problem PF has many solutions:
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Here are some theorems showing that tiling

problems can be very difficult to solve.

Theorem (Berger, 1966). We can construct

a tiling problem PF which has solutions but

no periodic solution.

Theorem (Myers, 1974). We can construct

a tiling problem PF which has solutions but

no computable solution.

Theorem (Durand/Romashchenko/Shen,

2008). We can construct a tiling problem

with the following property. PF has solutions,

but K(S) ≥ O(n) − O(1) for any n × n square

S in any solution of PF .

Note: O(n) − O(1) is best possible.
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Here is another theorem in this vein.

Theorem (Simpson, 2007).

Let PF be a tiling problem which has

solutions. Then, the degree of unsolvability

of PF belongs to Ew. Conversely, each degree

in Ew is the degree of a tiling problem.

My paper proving this result has been

accepted for publication in the journal

Ergodic Theory and Dynamical Systems.

Remark. The study of tiling problems is

essentially the same as 2-dimensional

symbolic dynamics. Given a tiling problem

PF , the solution set SF is either empty or

a 2-dimensional shift space of finite type.

Conversely, each 2-dimensional shift space

of finite type is equivalent to the solution set

of a tiling problem.
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Current research.

One of my research projects is

to study the relationship between

the degree of unsolvability of PF and

the classical dynamical properties of

the dynamical system SF .

An classically important invariant of

dynamical systems is entropy.

A less well-studied invariant is

degree of unsolvability.

Both of these invariants measure the

complexity of orbits in a dynamical system.

The entropy is an upper bound, while the

degree of unsolvability is a lower bound.

THE END.

THANK YOU!
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