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Definitions.
Let N, +, x,= be the natural number system.

For X C N we say that X is arithmetical

if X is first-order definable over N, +, x, =,
e, X={neN|(N,+,x,=) = d(n)}

for some first-order formula &.

For X, Y C N we say that X is arithmetical in Y
if X is first-order definable over N, 4+, x,=,Y.
We say that X,Y are arithmetically equivalent
(arithmetically incomparable) if each (neither)
is arithmetical in the other.

Let Pow(N) = {X | X C N} = the powerset of N.
Let S be a subset of Pow(N).

We say that S is arithmetical

if S={XCN|(N,4+,x,=,X) &= o}

for some first-order sentence &.

For X C N we say that X is implicitly arithmetical

or an arithmetical singleton
if the singleton set {X} is arithmetical.




Five T heorems.

1. There exists an arithmetical singleton
which is not arithmetical.

2. There exist X,Y C N such that

neither X nor Y is an arithmetical singleton,
but XY ={2n|neX}U{2n+1|neY}
IS an arithmetical singleton.

3. If S C Pow(N) is nonempty countable arithmetical,
then some X € S is an arithmetical singleton.

4. There are arithmetically incomparable X, Y CN
such that X and Y are arithmetical singletons.

5. There is a countable arithmetical S C Pow(N)
such that not all X € S are arithmetical singletons.

Theorem 3 is due to Hisao Tanaka, 1972,
Proceedings of the American Mathematical Society.

Theorems 4 and 5 are due to Leo Harrington,
1975—1976, unpublished.
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Proof of Theorem 1.

Let T°'C N be the truth set for arithmetic, i.e.,

the set of Godel numbers of first-order sentences
which are true in N, 4, x,=. Tarski's Theorem on
undefinability of truth says that 7' is not arithmetical.
However, T is implicitly arithmetical, namely

VOVW (#A(PAW) €T« (# (D) e TA#(W) € T)),
VO (#(Fnd(n)) € T <= In (F(P(n)) € T)), etc.,
where #(d) = the Godel number of &.

Proof of Theorem 2.
We use Cohen forcing over N, 4, x, =.

Let {0,1}* be the set of bitstrings,

i.e., finite sequences of O’s and 1's.

For o,7 € {0,1}* we write o™ 1 =

the concatenation, o followed by .

We write o C 7 if o is an initial segment of T,
i.e., 0" p =T for some p € {0,1}*.

A set D C {0,1}* is said to be dense if
Vodr (o C 7 and 7 € D).

Let D,, n € N, be an enumeration of the dense sets
which are arithmetical. We choose our enumeration
to be arithmetical in T', the Tarski truth set.



Proof of Theorem 2, continued.

Define sequences of bitstrings
cpCo1CoxC---0;C0o;41C -+ and

0T CmC---1; C 141 € as follows.

Stage 0. Let o9 = 79 = () = the empty sequence.

Stage 3n+ 1. Let 03,41 =03, p
and 73,41 = 73," p Where p is the least
member of {0,1}* such that o3, p € D

Stage 3n + 2. Let O3n+4+2 = O'3n_|_1/\,0
and 73,40 = 73,41~ p Where p is the least
member of {0,1}* such that 73,417 p € Dy.

Stage 3n+ 3. If ne T let O3n+3 — O'3n_|_2r\<1> and
T3n+4+3 = T3n42" (0). If n €T let 03,43 = 03,427 (0)
and 73,43 = T3,42" (1).

Let X, Y C N be such that |;o0; and U; 7; are the
characteristic functions of X and Y respectively.

Clearly X and Y are Cohen generic over N, 4, x, =.
Hence X and Y are not arithmetical singletons.
However, X @Y is arithmetically equivalent to 7',
hence X @& Y is an arithmetical singleton.



Recursion-theoretic concepts.

In order to prove Theorems 3, 4, 5 we use
recursion-theoretic concepts and notation.

From now on, instead of working with subsets of N,
we shall work with functions from N into N.

Let NN = {X | X : N - N} = the Baire space.
within NN we consider points X,Y,... ¢ NN
and sets P,Q,... C NN,

For e,i,j € N and X € NN we write {e}* (i) ~ j to
mean: the program with Godel number e using
oracle X and input ¢ eventually halts with output j.

We write {e}* (i) | to mean that 35 ({e}* (¢) ~ j).

We write X <4 Y to mean that X is
Turing reducible to Y, i.e., 3eVi (X (i) = {e}¥ (v)).

The Turing jump of X € NN is X’ ¢ NN defined by
X'(e) = 1 if {e}*(e) |, otherwise X'(e) = 0.

The iterated Turing jumps X(”), n € N, are defined
inductively by X0 = X and x(n+1) = (x()y/

Fact: X is arithmetical in Y «<— In (X <+ y (1)),
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Recursion-theoretic concepts, continued.

For X,Y € NN we define X @Y € NN py
(XPY)(2:)=X@G) and (X pY)(2i +1) =Y ().

A predicate R C (NN)k x N™ is said to be computable
if 3eVXq - -VXLVig---Vip {e}X100Xu(iy, . ip) =1
if R(X1,..., Xp,01,...,0n), {519 OXk(i1, ... in) =0
if “R(X1,...,Xr,%1,...,1n)).

A set P C NN is said to be NYY if and only if
P={X|Vi13ioViz ---in R(X,Y,%1,...,in)}

for some computable predicate R C (NV)2 x N,
We also write N9 = NY° where 0 € NN is
defined by 0(z) = 0 for all 1.

Note: There are n alternating quantifiers. The
last quantifier is Vi, if n is odd, di, if n is even.

Fact: P is arithmetical <= 3In (P is NY).

(n)
Caution: P is arithmetical if In (P is I‘Icl)’o ).
However, for sets P C NN, the converse may fail.

Fact: P is topologically closed <= 3Y (P is I‘I(l)’Y).



Proof of Theorem 3.

Suppose P C NN is arithmetical.
For example, suppose P is HO, say

P={X|Vidjvn R(X,i,5,n)}
where R is computable.

Given X, we replace the quantifiers 45 and Vn
by canonical Skolem functions f and g.

Let ¢g(4,7) = 1+ the least n such that —-R(X,1,7,n)
if such an n exists, otherwise g(z,7) = 0.

Note: g(i,j) = 0 = Vn R(X,4,7j,n).

Let f(i) =1+ the least 5 such that ¢g(i,5) =0
if such a j exists, otherwise f(7) = 0.

Note: f(i) > 0=3j(g(,4) =0) =3IjVnR(X,4,4j,n).
Hence X ¢ P =Vi(f(i) > 0).

Note: X & f & g is arithmetically equivalent to X.

Define F: P > NN by F(X) =X f@g.
Clearly F' is a one-to-one correspondence
between P and Q = {F(X) | X € P}.
Clearly @ is I‘I?, hence topologically closed.

Assume P is countable and nonempty. Then Q@ is
countable and nonempty, hence there exists Y € )
such that Y is isolated in Q. It follows that Y is
a MY singleton. Let X € P be such that F(X) =Y.
Then X is an arithmetical singleton, Q.E.D.
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Proof of Theorems 4 and 5.

To prove Theorems 4 and 5 we use treemaps.

Let N* = the set of strings, i.e., finite sequences of

natural numbers. For o,7 € N* we write o C 7 if o is
an initial segment of 7, i.e., 0" p = 7 for some p € N*.
For X e NN and n € N we write

and note that X|n € N*.
A tree is a set T'C N* such that
VoVr(c Cr,teT =0€T).
In this case we write
[T] = {X e NN |Vn (X [n € T)} = {paths through T7}.
Fact: A set P C NN s 094

<= P = [T] where T is I‘I?’A,
<— P = [T] where T is A-recursive.

A treemap is a function F : T — N* such that
VoVi(o™{i) € T = F(o) (i) C F(o"(1)).
In this case we have another tree
F(T)={r|3c(r+ C F(o),ceT)}
and F' induces a homeomorphism F : [T] = [F(T)]
given by F(X) =U{F(X|n) | n € N} for all X € [T].

A treemap F : T — N* is said to be A-recursive if
JeVo (0 € T = F(o) = {e}4(0)). It is easy to see that
if I and T are A-recursive then F(T) is A-recursive.
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0,A’

Lemma 1. Given a My set P we can find

a I‘I1 set Q and an A—recursive treemap F : P = Q.
Thus X @ A=7 F(X) & A uniformly for all X € P.

Proof. P is N3, say P = {X | Vi3j R(X,4,j)} where
R is A-recursive. Let F(X) = X @ f where f(i) =
the least j such that R(X,1,7) holds. Clearly F' is
A-recursive, and it can be shown that F' is a treemap.

0,A’

Lemma 2. Given a My set P we can find

a I‘I]L set Q and an A’ recursive treemap H : P = Q
such that X @ A=t H( X)) A =7 (H(X)® A)
uniformly for all X € P.

Proof. We first construct a particular A’-recursive
treemap G : N* — N*. Begin with G({)) = (). If G(0)
has been defined, let e = |o| = the length of o, and
for each i let G(o7(i)) = the least 7 O G(o)" (i) such
that {e}T@A(e) | if such a 7 exists, otherwise

G(o™ (i )) = G(o)"(i). Note that for all X we have
XA =G X)) A =1 (G(X)® A) uniformly.

/
Since G(P) is I‘IOA, apply Lemma 1 to get an

A-recursive treemap F : G(P) = @Q where Q is I‘I(]B"4
Then H=FoG: P=(Q is our desired H.
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(n)
Lemma 3. Given a I‘I(]B’O set P, we can find

a Ny set Py and a 0(")-recursive treemap H : P, & Pq
such that X @ 00" =+ H(X) @ 0 = (X))
uniformly for all X € P,.

Proof. Apply Lemma 2 n times. We then hav_e
P,...2pPX2p [ 2...2p)and P is I‘I?’O(Z)
and for each :=1,...,n we have a treemap

H; : P, = P;_q1 such that, uniformly for all X € P;,
X @0 =4 Hy(X) &0 =1 (H;(X) @ 0olt-1)y,
Our desired H : P, = Py is Hyo---0 Hp,.

We now prove weak forms of Theorems 4 and 5.

Theorem 4* (simplified version of Theorem 4).
For each n there are I‘I? singletons X,Y such that
X £ Y™ and v £ X,

Proof. Let X,, and Y, be such that
0 <t Xp <7 0n+1) and 00" <Y, <y olntD)

(n) |
I‘Ig’O singletons. We may safely assume that

(n)
they are I‘I?’O singletons. Let P, = {Xn, Yn}.

Apply Lemma 3toget H: P, = Py. Let Xg = H(Xy)
and Yo = H(Yn). Then Xq, Yy are the desired X,Y.
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Theorem 5* (simplified version of Theorem 5).
For each n there is a countable I‘I(l) set P such that
some Z € P is not a NY singleton.

Proof. Let P, be a countable I‘I(l) set such that
some Z, € P, is not isolated in P,. Apply Lemma 3
toget H: P, = Py. Let Zop = H(Z,). Then Py and
Zo are the desired P and Z.

Details: H is a homeomorphism of P, onto P,

SO Zp is not isolated in Py. Suppose Zg were

a MY singleton, say {Zp} = {Xo | X(g”)(e) = 0}.

Since X, ® 0" =+ H(X,)™) uniformly for X, € Py,
let j be such that H(X,)(™ (e) = 0 for all X,, € P,
such that X,lj = Z,|j. Since Z, is not isolated in Py,
let X,, € P, be such that X7 = Z,|7 and X,, # Zj.
Letting Xo = H(X,) we have X§™(e) =0 and

Xo # Zpg. This is a contradiction.

We now turn to the proofs of Theorems 4 and 5.
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To prove Theorems 4 and 5, we extend Lemma 3
replacing n by w, the first infinite ordinal number.
For X € NN define the w-jump X&) ¢ NN py

XW =xgegX'eX"a - -gXMg...

More precisely, let X(@)((n,i)) = X () where
(-,-) is a recursive one-to-one correspondence
between N x N and N.

Lemma 3* (Lemma 3 with n replaced by w).

(w)
Given a MY%"" set P, we can find a MY set Py

and a 0W-recursive treemap H : P, & P,
such that X @ 0W) =+ H(X) & 0W) =+ H(X)W)
uniformly for all X € P,.

In our proof of Lemma 3*, we shall exploit
the uniformity of Lemma 2, as we now explain.

Let T4, e € N, be a standard enumeration of all

I‘I?"4 trees. Then Pé4 = [TeA], e € N, is a standard
enumeration of all I‘I?’A sets.
Lemma 2 holds uniformly. Namely, we can find

a recursive function h and, for all e and A,

an A’-recursive treemap H : PA =2 P;f(e)
such that X @ A=t H( X)) A =7 (H(X)® A)
uniformly for all X € P4
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Proof of Lemma 3*.

Let T, be a 0(W-recursive tree such that P, = [Ty].
We can choose 7, in such a way that

{oc €T, | |o| <n} <t 0 uniformly for all n.

(n) L
Let Ten be a I‘I(l)’O tree consisting of {o | |o| < n}

}.

~o(n)
together with {7 | |7| >n, TIneT,, T € Tém 0

(n)
Note that Pep = [Te ] is a I‘Icl)’O set.

Using the uniformity of Lemma 2, we can find a
recursive function h* and, for n > 1, 0(™)_recursive
treemaps Hep @ Pen = Ph*(e),n_l such that

X P O(n) =T He,n(X) P O(n) =T (Hem,(X) D O(n—l))/

uniformly for all X € P, and furthermore
He n(o) = o for all o such that |o| < n.

By the Recursion Theorem, let e be a fixed point

of h*. Thus TA = T}ﬁ(e) for all A, so in particular

Ten = Tyx(e) n TOr all n. Using this e, define

(n) :
a I‘I?’O set and H, : P, = P,,_q is a treemanp.

Define H: P, = Py by H(o) = (Hqpo0---0 Hp)(0o)
where n = |o|. Then Py and H are as desired.
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Recall: we obtained Theorems 4* and 5* as easy
consequences of Lemma 3.

We shall now obtain Theorems 4 and 5 as easy
consequences of Lemma 3*.

The proofs are exactly the same.

Proof of Theorem 4. Let X, and Y, be such that
0) < X <7 0HD) and 0W) <Y, < oltL)

(W)
I‘Ig’O singletons. We may safely assume that they

(w)
are I‘I?’O singletons. Let P, = {Xw, Yu}. Apply
Lemma 3* to get H: P, &£ Py. Let Xg= H(X,) and
Yo = H(Y,). Then X, Yy are the desired X,Y.

Proof of Theorem 5. Let P, be a countable MY set
such that some Z, € P, is not isolated in P,. Apply
Lemma 3* toget H: P, &£ Py. Let Zog = H(Zy,).
Then Py and Zg are the desired P and Z.

THE END. THANK YOU!
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