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Definitions.

Let N,+,×,= be the natural number system.

For X ⊆ N we say that X is arithmetical

if X is first-order definable over N,+,×,=,

i.e., X = {n ∈ N | (N,+,×,=) |= Φ(n)}

for some first-order formula Φ.

For X, Y ⊆ N we say that X is arithmetical in Y

if X is first-order definable over N,+,×,=, Y .

We say that X, Y are arithmetically equivalent

(arithmetically incomparable) if each (neither)

is arithmetical in the other.

Let Pow(N) = {X | X ⊆ N} = the powerset of N.

Let S be a subset of Pow(N).

We say that S is arithmetical

if S = {X ⊆ N | (N,+,×,=, X) |= Φ}

for some first-order sentence Φ.

For X ⊆ N we say that X is implicitly arithmetical

or an arithmetical singleton

if the singleton set {X} is arithmetical.
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Five Theorems.

1. There exists an arithmetical singleton

which is not arithmetical.

2. There exist X, Y ⊆ N such that

neither X nor Y is an arithmetical singleton,

but X ⊕ Y = {2n | n ∈ X} ∪ {2n+1 | n ∈ Y }

is an arithmetical singleton.

3. If S ⊆ Pow(N) is nonempty countable arithmetical,

then some X ∈ S is an arithmetical singleton.

4. There are arithmetically incomparable X, Y ⊆ N

such that X and Y are arithmetical singletons.

5. There is a countable arithmetical S ⊆ Pow(N)

such that not all X ∈ S are arithmetical singletons.

Theorem 3 is due to Hisao Tanaka, 1972,

Proceedings of the American Mathematical Society.

Theorems 4 and 5 are due to Leo Harrington,

1975–1976, unpublished.
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Proof of Theorem 1.

Let T ⊆ N be the truth set for arithmetic, i.e.,

the set of Gödel numbers of first-order sentences

which are true in N,+,×,=. Tarski’s Theorem on

undefinability of truth says that T is not arithmetical.

However, T is implicitly arithmetical, namely

∀Φ∀Ψ(#(Φ ∧Ψ) ∈ T ⇐⇒ (#(Φ) ∈ T ∧#(Ψ) ∈ T)),

∀Φ(#(∃nΦ(n)) ∈ T ⇐⇒ ∃n (#(Φ(n)) ∈ T)), etc.,

where #(Φ) = the Gödel number of Φ.

Proof of Theorem 2.

We use Cohen forcing over N,+,×,=.

Let {0,1}∗ be the set of bitstrings,

i.e., finite sequences of 0’s and 1’s.

For σ, τ ∈ {0,1}∗ we write σaτ =

the concatenation, σ followed by τ .

We write σ ⊆ τ if σ is an initial segment of τ ,

i.e., σaρ = τ for some ρ ∈ {0,1}∗.

A set D ⊆ {0,1}∗ is said to be dense if

∀σ ∃τ (σ ⊆ τ and τ ∈ D).

Let Dn, n ∈ N, be an enumeration of the dense sets

which are arithmetical. We choose our enumeration

to be arithmetical in T , the Tarski truth set.
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Proof of Theorem 2, continued.

Define sequences of bitstrings

σ0 ⊆ σ1 ⊆ σ2 ⊆ · · ·σi ⊆ σi+1 ⊆ · · · and

τ0 ⊆ τ1 ⊆ τ2 ⊆ · · · τi ⊆ τi+1 ⊆ · · · as follows.

Stage 0. Let σ0 = τ0 = 〈〉 = the empty sequence.

Stage 3n+1. Let σ3n+1 = σ3n
aρ

and τ3n+1 = τ3n
aρ where ρ is the least

member of {0,1}∗ such that σ3n
aρ ∈ Dn.

Stage 3n+2. Let σ3n+2 = σ3n+1
aρ

and τ3n+2 = τ3n+1
aρ where ρ is the least

member of {0,1}∗ such that τ3n+1
aρ ∈ Dn.

Stage 3n+3. If n ∈ T let σ3n+3 = σ3n+2
a〈1〉 and

τ3n+3 = τ3n+2
a〈0〉. If n /∈ T let σ3n+3 = σ3n+2

a〈0〉

and τ3n+3 = τ3n+2
a〈1〉.

Let X, Y ⊆ N be such that
⋃
i σi and

⋃
i τi are the

characteristic functions of X and Y respectively.

Clearly X and Y are Cohen generic over N,+,×,=.

Hence X and Y are not arithmetical singletons.

However, X ⊕ Y is arithmetically equivalent to T ,

hence X ⊕ Y is an arithmetical singleton.
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Recursion-theoretic concepts.

In order to prove Theorems 3, 4, 5 we use

recursion-theoretic concepts and notation.

From now on, instead of working with subsets of N,
we shall work with functions from N into N.

Let NN = {X | X : N → N} = the Baire space.

Within NN we consider points X, Y, . . . ∈ NN

and sets P,Q, . . . ⊆ NN.

For e, i, j ∈ N and X ∈ NN we write {e}X(i) ≃ j to

mean: the program with Gödel number e using

oracle X and input i eventually halts with output j.

We write {e}X(i) ↓ to mean that ∃j ({e}X(i) ≃ j).

We write X ≤T Y to mean that X is

Turing reducible to Y , i.e., ∃e∀i (X(i) = {e}Y (i)).

The Turing jump of X ∈ NN is X ′ ∈ NN defined by

X ′(e) = 1 if {e}X(e) ↓, otherwise X ′(e) = 0.

The iterated Turing jumps X(n), n ∈ N, are defined

inductively by X(0) = X and X(n+1) = (X(n))′.

Fact: X is arithmetical in Y ⇐⇒ ∃n (X ≤T Y (n)).
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Recursion-theoretic concepts, continued.

For X, Y ∈ NN we define X ⊕ Y ∈ NN by

(X ⊕ Y )(2i) = X(i) and (X ⊕ Y )(2i+1) = Y (i).

A predicate R ⊆ (NN)k × Nn is said to be computable

if ∃e∀X1 · · · ∀Xk ∀i1 · · · ∀in ({e}X1⊕···⊕Xk(i1, . . . , in) = 1

if R(X1, . . . , Xk, i1, . . . , in), {e}X1⊕···⊕Xk(i1, . . . , in) = 0

if ¬R(X1, . . . , Xk, i1, . . . , in)).

A set P ⊆ NN is said to be Π
0,Y
n if and only if

P = {X | ∀i1 ∃i2 ∀i3 · · · inR(X, Y, i1, . . . , in)}

for some computable predicate R ⊆ (NN)2 × Nn.

We also write Π0
n = Π

0,0
n where 0 ∈ NN is

defined by 0(i) = 0 for all i.

Note: There are n alternating quantifiers. The

last quantifier is ∀in if n is odd, ∃in if n is even.

Fact: P is arithmetical ⇐⇒ ∃n (P is Π0
n).

Caution: P is arithmetical if ∃n (P is Π
0,0(n)

1 ).

However, for sets P ⊆ NN, the converse may fail.

Fact: P is topologically closed ⇐⇒ ∃Y (P is Π
0,Y
1 ).
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Proof of Theorem 3.

Suppose P ⊆ NN is arithmetical.
For example, suppose P is Π0

3, say

P = {X | ∀i∃j ∀nR(X, i, j, n)}

where R is computable.

Given X, we replace the quantifiers ∃j and ∀n
by canonical Skolem functions f and g.

Let g(i, j) = 1+ the least n such that ¬R(X, i, j, n)
if such an n exists, otherwise g(i, j) = 0.

Note: g(i, j) = 0 ≡ ∀nR(X, i, j, n).

Let f(i) = 1+ the least j such that g(i, j) = 0
if such a j exists, otherwise f(i) = 0.

Note: f(i) > 0 ≡ ∃j (g(i, j) = 0) ≡ ∃j ∀nR(X, i, j, n).
Hence X ∈ P ≡ ∀i (f(i) > 0).

Note: X ⊕ f ⊕ g is arithmetically equivalent to X.

Define F : P → NN by F(X) = X ⊕ f ⊕ g.
Clearly F is a one-to-one correspondence
between P and Q = {F(X) | X ∈ P}.
Clearly Q is Π0

1, hence topologically closed.

Assume P is countable and nonempty. Then Q is
countable and nonempty, hence there exists Y ∈ Q
such that Y is isolated in Q. It follows that Y is
a Π0

1 singleton. Let X ∈ P be such that F(X) = Y .
Then X is an arithmetical singleton, Q.E.D.
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Proof of Theorems 4 and 5.

To prove Theorems 4 and 5 we use treemaps.

Let N∗ = the set of strings, i.e., finite sequences of

natural numbers. For σ, τ ∈ N∗ we write σ ⊆ τ if σ is

an initial segment of τ , i.e., σaρ = τ for some ρ ∈ N∗.
For X ∈ NN and n ∈ N we write

X↾n = 〈X(0), X(1), . . . , X(n− 1)〉

and note that X↾n ∈ N∗.

A tree is a set T ⊆ N∗ such that

∀σ ∀τ (σ ⊆ τ, τ ∈ T ⇒ σ ∈ T).

In this case we write

[T ] = {X ∈ NN | ∀n (X↾n ∈ T)} = {paths through T}.

Fact: A set P ⊆ NN is Π
0,A
1

⇐⇒ P = [T ] where T is Π
0,A
1 ,

⇐⇒ P = [T ] where T is A-recursive.

A treemap is a function F : T → N∗ such that

∀σ ∀i (σa〈i〉 ∈ T ⇒ F(σ)a〈i〉 ⊆ F(σa〈i〉).

In this case we have another tree

F(T) = {τ | ∃σ (τ ⊆ F(σ), σ ∈ T)}

and F induces a homeomorphism F : [T ] ∼= [F(T)]

given by F(X) =
⋃
{F(X↾n) | n ∈ N} for all X ∈ [T ].

A treemap F : T → N∗ is said to be A-recursive if

∃e∀σ (σ ∈ T ⇒ F(σ) = {e}A(σ)). It is easy to see that

if F and T are A-recursive then F(T) is A-recursive.
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Lemma 1. Given a Π
0,A′

1 set P we can find

a Π
0,A
1 set Q and an A-recursive treemap F : P ∼= Q.

Thus X ⊕ A ≡T F(X)⊕ A uniformly for all X ∈ P .

Proof. P is Π
0,A
2 , say P = {X | ∀i∃j R(X, i, j)} where

R is A-recursive. Let F(X) = X ⊕ f where f(i) =

the least j such that R(X, i, j) holds. Clearly F is

A-recursive, and it can be shown that F is a treemap.

Lemma 2. Given a Π
0,A′

1 set P we can find

a Π
0,A
1 set Q and an A′-recursive treemap H : P ∼= Q

such that X ⊕A′ ≡T H(X)⊕ A′ ≡T (H(X)⊕ A)′

uniformly for all X ∈ P .

Proof. We first construct a particular A′-recursive

treemap G : N∗ → N∗. Begin with G(〈〉) = 〈〉. If G(σ)

has been defined, let e = |σ| = the length of σ, and

for each i let G(σa〈i〉) = the least τ ⊇ G(σ)a〈i〉 such

that {e}τ⊕A
|τ |

(e) ↓ if such a τ exists, otherwise

G(σa〈i〉) = G(σ)a〈i〉. Note that for all X we have

X ⊕ A′ ≡T G(X)⊕A′ ≡T (G(X)⊕A)′ uniformly.

Since G(P) is Π
0,A′

1 , apply Lemma 1 to get an

A-recursive treemap F : G(P) ∼= Q where Q is Π
0,A
1 .

Then H = F ◦G : P ∼= Q is our desired H.
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Lemma 3. Given a Π
0,0(n)

1 set Pn we can find

a Π0
1 set P0 and a 0(n)-recursive treemap H : Pn

∼= P0

such that X ⊕ 0(n) ≡T H(X)⊕ 0(n) ≡T H(X)(n)

uniformly for all X ∈ Pn.

Proof. Apply Lemma 2 n times. We then have

Pn
∼= · · · ∼= Pi

∼= Pi−1
∼= · · · ∼= P0 and Pi is Π

0,0(i)

1

and for each i = 1, . . . , n we have a treemap

Hi : Pi
∼= Pi−1 such that, uniformly for all X ∈ Pi,

X ⊕ 0(i) ≡T Hi(X)⊕ 0(i) ≡T (Hi(X)⊕ 0(i−1))′.

Our desired H : Pn
∼= P0 is H1 ◦ · · · ◦Hn.

We now prove weak forms of Theorems 4 and 5.

Theorem 4∗ (simplified version of Theorem 4).

For each n there are Π0
1 singletons X,Y such that

X �T Y (n) and Y �T X(n).

Proof. Let Xn and Yn be such that

0(n) ≤T Xn ≤T 0(n+1) and 0(n) ≤T Yn ≤T 0(n+1)

and Xn �T Yn and Yn �T Xn. Then Xn and Yn are

Π
0,0(n)

2 singletons. We may safely assume that

they are Π
0,0(n)

1 singletons. Let Pn = {Xn, Yn}.

Apply Lemma 3 to get H : Pn
∼= P0. Let X0 = H(Xn)

and Y0 = H(Yn). Then X0, Y0 are the desired X,Y .
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Theorem 5∗ (simplified version of Theorem 5).

For each n there is a countable Π0
1 set P such that

some Z ∈ P is not a Π0
n singleton.

Proof. Let Pn be a countable Π0
1 set such that

some Zn ∈ Pn is not isolated in Pn. Apply Lemma 3

to get H : Pn
∼= P0. Let Z0 = H(Zn). Then P0 and

Z0 are the desired P and Z.

Details: H is a homeomorphism of Pn onto P0,

so Z0 is not isolated in P0. Suppose Z0 were

a Π0
n singleton, say {Z0} = {X0 | X

(n)
0 (e) = 0}.

Since Xn ⊕ 0(n) ≡T H(Xn)(n) uniformly for Xn ∈ Pn,

let j be such that H(Xn)(n)(e) = 0 for all Xn ∈ Pn

such that Xn↾j = Zn↾j. Since Zn is not isolated in Pn,

let Xn ∈ Pn be such that Xn↾j = Zn↾j and Xn 6= Zn.

Letting X0 = H(Xn) we have X
(n)
0 (e) = 0 and

X0 6= Z0. This is a contradiction.

We now turn to the proofs of Theorems 4 and 5.
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To prove Theorems 4 and 5, we extend Lemma 3

replacing n by ω, the first infinite ordinal number.

For X ∈ NN define the ω-jump X(ω) ∈ NN by

X(ω) = X ⊕X ′ ⊕X ′′ ⊕ · · · ⊕X(n) ⊕ · · ·.

More precisely, let X(ω)((n, i)) = X(n)(i) where

(·, ·) is a recursive one-to-one correspondence

between N× N and N.

Lemma 3∗ (Lemma 3 with n replaced by ω).

Given a Π
0,0(ω)

1 set Pω we can find a Π0
1 set P0

and a 0(ω)-recursive treemap H : Pω
∼= P0

such that X ⊕ 0(ω) ≡T H(X)⊕ 0(ω) ≡T H(X)(ω)

uniformly for all X ∈ Pω.

In our proof of Lemma 3∗, we shall exploit

the uniformity of Lemma 2, as we now explain.

Let TA
e , e ∈ N, be a standard enumeration of all

Π
0,A
1 trees. Then PA

e = [TA
e ], e ∈ N, is a standard

enumeration of all Π
0,A
1 sets.

Lemma 2 holds uniformly. Namely, we can find

a recursive function h and, for all e and A,

an A′-recursive treemap H : PA′

e
∼= PA

h(e)

such that X ⊕A′ ≡T H(X)⊕ A′ ≡T (H(X)⊕ A)′

uniformly for all X ∈ PA′

e .
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Proof of Lemma 3∗.

Let Tω be a 0(ω)-recursive tree such that Pω = [Tω].

We can choose Tω in such a way that

{σ ∈ Tω | |σ| ≤ n} ≤T 0(n) uniformly for all n.

Let Te,n be a Π
0,0(n)

1 tree consisting of {σ | |σ| ≤ n}

together with {τ | |τ | > n, τ↾n ∈ Tω, τ ∈ T
〈n〉a0(n)
e }.

Note that Pe,n = [Te,n] is a Π
0,0(n)

1 set.

Using the uniformity of Lemma 2, we can find a

recursive function h∗ and, for n ≥ 1, 0(n)-recursive

treemaps He,n : Pe,n
∼= Ph∗(e),n−1 such that

X ⊕ 0(n) ≡T He,n(X)⊕ 0(n) ≡T (He,n(X)⊕ 0(n−1))′

uniformly for all X ∈ Pe,n, and furthermore

He,n(σ) = σ for all σ such that |σ| ≤ n.

By the Recursion Theorem, let e be a fixed point

of h∗. Thus TA
e = TA

h∗(e)
for all A, so in particular

Te,n = Th∗(e),n for all n. Using this e, define

Pn = Pe,n and Hn = He,n for all n. Thus Pn is

a Π
0,0(n)

1 set and Hn : Pn
∼= Pn−1 is a treemap.

Define H : Pω
∼= P0 by H(σ) = (H1 ◦ · · · ◦Hn)(σ)

where n = |σ|. Then P0 and H are as desired.
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Recall: we obtained Theorems 4∗ and 5∗ as easy

consequences of Lemma 3.

We shall now obtain Theorems 4 and 5 as easy

consequences of Lemma 3∗.

The proofs are exactly the same.

Proof of Theorem 4. Let Xω and Yω be such that

0(ω) ≤T Xω ≤T 0(ω+1) and 0(ω) ≤T Yω ≤T 0(ω+1)

and Xω �T Yω and Yω �T Xω. Then Xω and Yω are

Π
0,0(ω)

2 singletons. We may safely assume that they

are Π
0,0(ω)

1 singletons. Let Pω = {Xω, Yω}. Apply

Lemma 3∗ to get H : Pω
∼= P0. Let X0 = H(Xω) and

Y0 = H(Yω). Then X0, Y0 are the desired X, Y .

Proof of Theorem 5. Let Pω be a countable Π0
1 set

such that some Zω ∈ Pω is not isolated in Pω. Apply

Lemma 3∗ to get H : Pω
∼= P0. Let Z0 = H(Zω).

Then P0 and Z0 are the desired P and Z.

THE END. THANK YOU!
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