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Two books on reverse mathematics,

a status report:

1. RM2001

S. G. Simpson, editor

Reverse Mathematics 2001

(a volume of papers by various authors)

Volume 21, Lecture Notes in Logic

Association for Symbolic Logic

VIII + 401 pages, 2005

2. SOSOA

Stephen G. Simpson

Subsystems of Second Order Arithmetic

Second Edition

Volume 1, Perspectives in Logic

Association for Symbolic Logic

approximately 460 pages, in press

to appear in February 2006
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Remark:

This talk represents joint work with Carl

Mummert, my recent Ph.D. student at the

Pennsylvania State University.

Background:

In my book SOSOA, a complete separable

metric space is defined as the completion

X = (Â, d̂) of a countable pseudometric space

(A, d). Here A ⊆ N and d : A× A→ R.

Thus complete separable metric spaces are

“coded” by countable objects. Using this

coding, a great deal of analysis and geometry

is developed in RCA0, with many reverse

mathematics results.
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A conceptual difficulty:

Before Mummert/Simpson, there was no

reverse mathematics study of general

topology.

The obstacle was, there was no way to

discuss abstract topological spaces in L2, the

language of second order arithmetic. This

was the case even for topological spaces

which are separable or second countable.

The solution:

We overcome this obstacle by introducing a

restricted class of topological spaces, called

countably based MF spaces.

This class includes all complete separable

metric spaces, as well as many nonmetrizable

spaces.

Furthermore, this class of spaces can be

discussed in L2.
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Let P be a poset, i.e., a partially ordered set.

Definition. A filter is a set F ⊆ P such that

1. F is upward closed, i.e.,

(p ∈ F ∧ q ≥ p) ⇒ q ∈ F .

2. for all p, q ∈ F there exists r ∈ F such that

p ≥ r ∧ q ≥ r.

Compare the treatment of forcing in Kunen’s

textbook of axiomatic set theory.

Definition. A maximal filter is a filter which

is not properly included in any other filter.

By Zorn’s Lemma, every filter is included in a

maximal filter.

Definition.

MF(P) = {F | F is a maximal filter on P}.
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Definition.

MF(P) = {F | F is a maximal filter on P}.

MF(P) is a topological space with basic open

sets

Np = {F | p ∈ F}

for all p ∈ P .

Definition. An MF space is a space of the

form MF(P) where P is a poset.

Definition. A countably based MF space is a

space of the form MF(P) where P is a

countable poset.

Thus, the second countable topological space

MF(P) is “coded” by the countable poset P .

Therefore, countably based MF spaces can be

defined and discussed in L2. Thus we can do

reverse mathematics in the usual setting,

subsystems of second order arithmetic.
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Characterization problems:

1. To characterize those topological spaces

which are homeomorphic to MF spaces.

2. To characterize those topological spaces

which are homeomorphic to countably based

MF spaces.

These problems seem difficult.
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Examples of MF spaces.

Many topological spaces are homeomorphic

to MF spaces:

• all complete metric spaces.

• all locally compact Hausdorff spaces.

• the weak-star dual of any Banach space.

• any Gδ subset of any MF space.

• the Baire space ωω with the topology

generated by the Σ1
1 sets,

i.e., the Gandy/Harrington topology.

The latter is a neat example of a countably

based MF space which is Hausdorff but not

metrizable. However, the dense open subset

{f ∈ ωω | ωf1 = ωCK
1 } is completely metrizable.
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Theorem. Every complete (separable) metric

space is homeomorphic to a (countably

based) MF space.

Proof (sketch). Let Â be a complete metric

space with dense subset A. Let P = A× Q+

ordered by (a, r) < (b, s) if and only if

d(a, b) + r < s. We argue that MF(P) is

homeomorphic to X. Given a maximal filter

F on P , we claim that inf{r | (a, r) ∈ F} = 0.

Suppose the inf is h > 0. Let (a, r) ∈ F be

such that h ≤ r < 4h/3. We show that

(a, r/3) < (b, s) for all (b, s) ∈ F , contradicting

maximality. Given (b, s) ∈ F , let (c, t) ∈ F be

such that (c, t) < (a, r) and (c, t) < (b, s). We

have h ≤ t < r < 4h/3 and

d(a, c) + h ≤ d(a, c) + t < r < 4h/3, hence

d(a, c) < h/3, hence d(a, c) + r/3 <

d(a, c) + 4h/9 ≤ h/3 + 4h/9 = 7h/9 < t so

(a, r/3) < (c, t) < (b, s), proving the claim.

Hence F is generated by

(a0, r0) > (a1, r1) > · · · > (an, rn) > · · ·

with limn rn = 0, giving a point of Â.
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Metrization theorems:

Urysohn Metrization Theorem. A second

countable topological space is metrizable if

and only if it is regular. (A topological space

is said to be regular if, for every open set U

and point x ∈ U , there exists an open set V

such that x ∈ V and the closure of V is

included in U . See Kelley, General Topology.)

Choquet Metrization Theorem. A

topological space is completely metrizable if

and only if it is metrizable and has the

strong Choquet property. (This is a

game-theoretic property which is similar to,

but stronger than, the property of Baire. See

Kechris, Classical Descriptive Set Theory.)

Theorem. All MF spaces have the strong

Choquet property. (See Mummert’s Ph.D.

thesis, 2005.)
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Metrization theorems, continued.

Combining the above results, we have the

following metrization theorem for countably

based MF spaces.

MFMT: A countably based MF space

is completely metrizable if and only if

it is regular.

Note that the statement MFMT can be

formalized as a sentence in the language of

second order arithmetic.

We study the reverse mathematics of MFMT.
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We consider the following subsystems of

second order arithmetic.

ACA0 = arithmetical comprehension.

Π1
1-CA0 = Π1

1 comprehension.

Π1
2-CA0 = Π1

2 comprehension.

Remark. The fundamental concepts of the

theory of MF spaces can be formalized in

ACA0. In particular, it is provable in ACA0 that

every complete separable metric space is

homeomorphic to a countably based MF

space.

Theorem. MFMT is equivalent to Π1
2-CA0.

The equivalence is provable in Π1
1-CA0.

We outline the proof of this theorem.
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Lemma 1. MFMT is provable in Π1
2-CA0.

Proof. Part 1. Assume MF(P) is regular.

Use Π1
2 comprehension to form the set

{(p, q) ∈ P × P | Np ⊇ closure of Nq}.
Use this set as a parameter. Follow Matthias

Schröder’s effective adaptation of the original

Urysohn argument, to find a metric d1 for

MF(P). Thus MF(P) is metrizable.

Part 2. Fix a countable dense set

A ⊆ MF(P). Use Π1
2 comprehension to form

the sets {(a, r, p) ∈ A× Q+ × P | B(a, r) ⊆ Np}
and {(a, r, p) ∈ A× Q+ × P | Np ⊆ B(a, r)},
where B(a, r) = {x ∈ MF(P) | d1(a, x) < r}.
Using these sets as parameters, construct a

Gδ set in (Â, d̂1) which has the same points

as MF(P) and is homeomorphic to MF(P). It

follows that MF(P) is homeomorphic to a

complete separable metric space (Â, d̂2).

Note: Choquet’s game-theoretic argument is

not formalizable in second order arithmetic.

Instead, we argue directly within Π1
2-CA0.
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Lemma 2. Over Π1
1-CA0, MFMT implies Π1

2
comprehension.

Proof. Let ψ(n,X) be a Π1
1 formula.

Assuming MFMT, we prove the existence of

the Σ1
2 set S = {n | ∃X ψ(n,X)}.

We write ψ(n,X) ≡ ¬∃f ∀mR(n,X[m], f [m])

where X[m] = 〈X(0), . . . , X(m− 1)〉 and

f [m] = 〈f(0), . . . , f(m− 1)〉. Let P be the

countable poset consisting of all (n,X[k], f [k])
such that (∀m ≤ k)R(n,X[m], f [m]), plus all

(n,X[k]), partially ordered by:

1. (n,X[k], f [k]) < (n′, X ′[k′], f ′[k′]) iff n = n′

and X[k] ⊃ X ′[k′] and f [k] ⊃ f ′[k′].

2. (n,X[k]) < (n′, X ′[k′]) iff n = n′ and

X[k] ⊃ X ′[k′].

3. (n,X[k], f [k]) < (n′, X ′[k′]) iff n = n′ and

X[k] ⊃ X ′[k′].

4. (n,X[k]) < (n′, X ′[k′], f ′[k′]) never.
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The maximal filters on P are of three types:

1. F = {p ∈ P | q ≤ p},
where q is a minimal element of P .

2. F = {(n,X[k], f [k]), (n,X[k]) | k ∈ N},
where n,X, f are such that

∀mR(n,X[m], f [m]) holds.

3. F = {(n,X[k]) | k ∈ N},
where n,X are such that ψ(n,X) holds.

Let C be the closed set in MF(P) consisting

of all F of type 3. The complement of C is

the open set
⋃
n∈NN(n,〈〉,〈〉).

By Kondo’s Π1
1 Uniformization Theorem

(provable in Π1
1-CA0, SOSOA §VI.2), we may

assume that ∀n (∃ at most one X)ψ(n,X).

Thus, for each n, C ∩N(n,〈〉) contains at most

one point.

Under this assumption, it is straightforward

to show that MF(P) is regular.
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By MFMT, there is a homeomorphism

Φ : MF(P) ∼= Â, where Â is a complete

separable metric space. In particular,

Φ(C) ⊆ Â is closed, and the open sets

Φ(N(n,〈〉)) ⊆ Â are arithmetical uniformly in n,

using a code of Φ−1 as a parameter. Hence

by Π1
1 comprehension we may form the set

S = {n | Φ(C) ∩ Φ(N(n,〈〉)) 6= ∅}

= {n | C ∩N(n,〈〉) 6= ∅}

= {n | ∃X ψ(n,X)} .

This completes the proof.

Remark. This is the first instance of a core

mathematical theorem equivalent to Π1
2

comprehension. Previous reverse mathematics

results within second order arithmetic have

involved only weaker set existence axioms.

(However, Heinatsch and Möllerfeld have

shown that Π1
2-CA0 proves the same Π1

1
sentences as ACA0 +<ω-Σ0

2 determinacy.)
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Another result:

Theorem. The following are equivalent over

ACA0.

1. In any countably based MF space, any
uncountable closed set contains a perfect set.

2. ∀X (ℵ
L(X)
1 is countable).
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THE END
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