Reverse Mathematics and Π_2^1 Comprehension

Stephen G. Simpson Department of Mathematics Pennsylvania State University http://www.math.psu.edu/simpson/

August 30, 2005

Note: This is an abstract of an invited one-hour talk, to be given on October 6, 2005, at the Mathematical Logic Seminar in the Department of Mathematical Sciences of Carnegie Mellon University.

Abstract

This is joint work with Carl Mummert. We initiate the reverse mathematics of general topology. We show that a certain metrization theorem is equivalent to Π_2^1 comprehension. An *MF space* is defined to be a topological space of the form MF(*P*) with topology generated by $\{N_p \mid p \in P\}$. Here *P* is a poset, MF(*P*) is the set of maximal filters on *P*, and $N_p = \{F \in MF(P) \mid p \in F\}$. If the poset *P* is countable, the space MF(*P*) is said to be *countably based*. The class of countably based MF spaces can be defined and discussed within the subsystem ACA₀ of second order arithmetic. One can prove within ACA₀ that every complete separable metric space is homeomorphic to a countably based MF space which is regular. We show that the converse statement, "every countably based MF space which is regular is homeomorphic to a complete separable metric space," is equivalent to Π_2^1 -CA₀. The equivalence is proved in the weaker system Π_1^1 -CA₀. This is the first example of a theorem of core mathematics which is provable in second order arithmetic and implies Π_2^1 comprehension.