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Degrees of unsolvability: a three-hour tutorial.

Hour 1. Turing degrees, Muchnik degrees, the Muchnik topos.
Hour 2. Examples of Turing degrees and Muchnik degrees.

Hour 3. Muchnik degrees of nonempty I‘I? subsets of {0, 1},

Our notation for degree structures:

D+ = the upper semilattice of all Turing degrees.
Dw = the lattice of all Muchnik degrees.
ET = the upper semilattice of recursively enumerable Turing degrees.
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Motivation: a non-rigorous “calculus of problems.”

Given a “problem’” P, it is natural to hope for an ‘easy solution” of P.

If P is “unsolvable” (i.e., has no “easy solution’), it is natural to ask
“how unsolvable” P is. We therefore seek to measure the “amount” or
“degree” of “unsolvability’” which is inherent in P.

Let us say that P is “reducible” to another “problem” @ if, given any
“solution” of @), we can use it to “easily” find a “solution” of P.

If P and @ are “reducible” to each other, we say that they have
the same “degree of unsolvability.”

There are many ways to convert these non-rigorous ideas into
rigorous ones. We focus on two closely related degree structures:
the Turing degrees, D+, and the Muchnik degrees, Dy.

A Turing degree measures the unsolvability of a decision problem.

A Muchnik degree measures the unsolvability of a mass problem.

The Muchnik degrees are the completion of the Turing degrees.




Turing degrees versus Muchnik degrees. A decision problem has
only one solution. A mass problem may have many different solutions.

A decision problem is a real X & NN, Intuitively, X represents
the problem of “finding” or “computing” X.
This problem has only one solution, namely, X.

For X,Y € NN we say that X is Turing reducible to Y, abbreviated
X <Y, if X is computable using Y as a Turing oracle.

A Turing degree is an equivalence class of decision problems under
mutual Turing reducibility. The Turing degree of X is denoted
degT(X). The partial ordering of all Turing degrees is denoted D-.

A mass problem is a subset of NN, Intuitively, P C NN represents
the problem of “finding” or “computing” some member of P.
Thus any X € P is a solution of this problem.

For P,Q C NN we say that P is Muchnik reducible to Q, abbreviated
P<w@Q, ifvY(Ye@Q=3X(XePand X <tY)). In other words, using
any solution of ) as an oracle, we can compute some solution of P.

A Muchnik degree is an equivalence class of mass problems under
mutual Muchnik reducibility. The Muchnik degree of P is denoted
degw(P). The partial ordering of all Muchnik degrees is denoted Dy.
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Turing degrees versus Muchnik degrees (continued).

Recall D+ = the partial ordering of all Turing degrees,
and Dw = the partial ordering of all Muchnik degrees.

Identifying degr(X) with degw({X}), we have
an order-preserving embedding deg+(X) — degyw({X}) : DT — Dw.

This induces an order-reversing one-to-one correspondence
between Muchnik degrees and upwardly closed sets of Turing degrees.
The upwardly closed set corresponding to p € Dw is {a € Dt | p < a}.

Thus we may identify Dw = DT = the completion of D

In particular, Dw is a complete and completely distributive lattice.

D~ is not even a lattice. However, D+ is an upper semilattice.
Namely, for all X,Y € NN the Turing degree deg+(X @ Y) = sup(a,b)
is the supremum (= l.u.b.) of deg+(X) = a and degt(Y) = b.

Also, D+ has a bottom element, namely 0 = deg—(0).

Our embedding of D+ into Dw preserves these features.



The completion of a partial ordering.

Our identification of Dw as the completion of D
IS an instance of a general construction.

Let IC be any partial ordering, i.e., partially ordered set.

Let K be the set of upwardly closed subsets of IC, partially ordered by
reverse inclusion, i.e., U <V if and only if 4 DO V.

Then K is a complete and completely distributive lattice,

called the completion of K. Identifying a € IC with the upwardly closed
set Uy = {z € K | z > a}, we see that K is a subordering of K,

namely, a < b if and only if Uy, < U,.

For PCNN et PA={Y |(3X eP) (X <TY)}=
the Turing upward closure of P. It is easy to check that

P <w Q@ if and only if P* D Q*.

Thus Dy = 25;— = the completion of D+, and Muchnik degrees
are identified with upwardly closed sets of Turing degrees.



A digression: suborderings of D+ and Dy.

Since D+ and Dy are large and complicated, it is natural to consider
suborderings which are more manageable. Two such suborderings are

E1 = {deg1(x4) | A is a recursively enumerable subset of N}
and

Ew = {degw(P) | P is a nonempty N9 subset of {0,1}"}.

There is a strong analogy between &4 and &w.

ET is the smallest natural subsemilattice of D+, and
Ew 1S the smallest natural sublattice of Dw.

The bottom and top degrees degrees in &4 are 0 = deg+(0) and
0’ = degr(xq), where 0 = xp and 0’ = H = the set of Turing machine
programs which eventually halt.

The bottom and top degrees in &w are 0 and 1, where 0 = deg\,({0})
and 1 = degw (C(PA)) where C(PA) is the set of complete and consistent
theories which are extensions of first-order Peano arithmetic.

There is a natural semilattice embedding a — inf(a,1) : &1 — Ew
(Simpson 2007). This embedding preserves 0 and < and sup.
However, it does not preserve inf, even when inf(a,b) exists in &.
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The most famous structural results for &1 are
the Splitting Theorem and the Density Theorem.

Splitting Theorem for £+ (Sacks 1962). &+ satisfies
Ve(x >0=Judv(u<x and v <z and x = sup(u,v))).

Density Theorem for &+ (Sacks 1964). &+ satisfies
VeVy(zx <y=3dz(x < z<y)).

There are now analogous results for Ew:

Splitting Theorem for &y (Binns 2003). &y satisfies
Ve(x >0=Judv(u<x and v <z and x = sup(u,v))).

Density Theorem for &y (Binns/Shore/Simpson 2014). &w satisfies
VeVy(zx <y=3dz(x < z<y)).

In Hour 3 I will sketch the proof of the Density Theorem for Ew.
The Dense Splitting Theorem

VeVy(r <y=Judv(zr<u<yand z<v<yand y =sup(u,v)))
does not hold for & (Lachlan, Annals of Mathematical Logic, 1976).

It is unknown whether the Dense Splitting Theorem holds for &Ew.




The Muchnik topos.

We may view D~ as a topological space in which the open sets are
the upwardly closed subsets of D+. Recall also that we have identified
the upwardly closed subsets of D+ with the Muchnik degrees.
Therefore, by McKinsey/Tarski 1944, the Muchnik lattice Dw

IS a topological model of intuitionistic propositional calculus.

For any topological space 7, a sheaf over T consists of a topological
space X together with a local homeomorphism p: X — 7. A sheaf
morphism from a sheaf p: X — 7 to another sheaf¢g: Y — 7T is a
continuous function f: X — Y such that p(x) = q(f(x)) for all z € X.

Let Sh(7) = the category of sheaves and sheaf morphisms over 7. By
Fourman/Scott 1979, Sh(7) is a topos and a model of intuitionistic
higher-order logic. In this model, the truth values are open subsets of 7.

Applying the above construction to the topological space D,
we obtain Sh(D+) = the Muchnik topos. In this model of
intuitionistic mathematics, the truth values are the Muchnik degrees.

We offer Sh(D+) as a rigorous implementation of Kolmogorov's
1932 non-rigorous interpretation of intuitionistic mathematics as
a ‘‘calculus of problems.”



The real number system(s) in the Muchnik topos.

Consider the topological space Rp = R x D+ with basic open sets
{x} xU where £ € R and U C D is upwardly closed. There is a
projection map p: R — D~ given by p(x,a) = a. Thus Rg is a sheaf
over Dt representing the Cauchy/Dedekind real number system.

An interesting subsheaf of Ro is Ry; = {(x,a) € R | degr(x) < a},

the sheaf of Muchnik reals, which supports an analog of computable
analysis. Intuitively, a Cauchy/Dedekind real can exist anywhere within
the Turing degrees, but a Muchnik real can exist only where we have
enough Turing oracle power to compute it.

Theorem (Basu/Simpson 2014). Let z,y,z be variables ranging over
Muchnik reals, let w be a variable ranging over functions from Muchnik
reals to Muchnik reals, and let ®(x,y) be a formula

in which w and z do not occur. Then, the Muchnik topos Sh(D)
satisfies a Choice and Bounding Principle

(Ve Iy P(z,y)) = (GwIzVz (wr < 2P z and P(z,wx))).

Corollary of the proof. If Sh(D+) satisfies Vax dy ®(z,y),
then Sh(D+) satisfies Jw Ve (wx <4 x and $(z,wx)).
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Degrees of unsolvability: a three-hour tutorial.

Hour 1. Turing degrees, Muchnik degrees, and the Muchnik topos.
Hour 2. Examples of Turing degrees and Muchnik degrees.

Hour 3. Muchnik degrees of nonempty M9 subsets of {0, 1}!.

Our notation for degree structures:

D+ = the upper semilattice of all Turing degrees.
Dw = the lattice of all Muchnik degrees.
E1T = the upper semilattice of recursively enumerable Turing degrees.

the lattice of Muchnik degrees of nonempty I‘I(l) subsets of {0, 1}V,
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Some specific, natural, Turing degrees.

Given a decision problem X ¢ NN let X’ ¢ NN encode
the halting problem relative to X, i.e., with X used as a Turing oracle.

If a=degT(X), let 8/ = deg+(X’). It can be shown that
a’ is independent of the choice of X such that degc(X) = a.
The operator aw a’ : D+ — D is called the jump operator.

Generalizing Turing’'s proof of unsolvability of the halting problem,
we have a < a’. In other words, the decision problem X’
IS “more unsolvable than” the decision problem X.

Inductively we define al0) = a and a(®»*+1) = (a(®))’ for all n € N.
Extending this induction into the transfinite, we can define al®)
where o ranges over a large initial segment of the ordinal numbers.
The naturalness of this transfinite induction is proved in a series of
theorems due to Spector, Sacks, Jockusch/Simpson, and Hodes.

In particular, we have a transfinite sequence of Turing degrees
0<0 <0”"< - <0 <olatl) ..

Apart from these, no specific natural Turing degrees are known!!!
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A picture of D+, the upper semilattice of Turing degrees.

(a+1)

(o

Apart from the Turing degrees 0 < 0/ < 0" < ... < 0(®) <« glatl) ...
no specific, natural Turing degrees are known.
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A limitation of the Turing degrees.

There are many specific, natural, algorithmically unsolvable problems
to which it is impossible to assign a Turing degree.

Example. Let T be a consistent, recursively axiomatizable theory
which is effectively essentially undecidable. For instance,

T = PA = /1 = first-order arithmetic,

or T'= /, = second-order arithmetic,

or T'=7FC = Zermelo/Fraenkel set theory,

or T'= Q = Robinson’s arithmetic,

or 1' = any consistent, recursively axiomatizable theory

which is an extension of one of these.

Any consistent, complete theory which extends 7' is undecidable.
Let C(T") be the problem of finding such an extension.

The mass problem C(T) is specific, natural, and unsolvable,

but there is no Turing degree corresponding to C(T).

The way to overcome this limitation of the Turing degrees is
to use mass problems and Muchnik degrees.
14



Some specific, natural, Muchnik degrees, part 1.

Of course, the specific, natural, Turing degrees
0<0 <0 <...<0@ <olatl) - ..
may also be viewed as specific, natural, Muchnik degrees.

Another specific, natural, Muchnik degree is 1 = deg (C(PA)).

Remark. The Muchnik degree deg\ (C(T)) is independent of

our choice of T (so long as T is consistent, recursively axiomatizable,
and effectively essentially undecidable). Thus we have

1 = degy (C(PA)) = degw(C(Z2)) = degw (C(ZFC)) = degw (C(Q)).

The Turing degrees > 1 are often called “PA-degrees,” but they could
equally well be called “Z>-degrees” or “/ZFC-degrees” or “Q-degrees.”

The jump operator applies to Muchnik degrees.
Given p = degy (P) we define p’ = degyw({X’' | X € P}).

The Kleene Basis Theorem implies that 0 <1 < 0.
The Low Basis Theorem implies that 1/ = 0’.
15



Some specific, natural, Muchnik degrees, part 2.

Many specific, natural, Muchnik degrees arise from
algorithmic randomness and Kolmogorov complexity.

Let MLR = {Z € {0,1}} | Z is Martin-L&f random}.

More generally, for X ¢ NN |et
MLR(X) = {Z € {0,1}} | Z is Martin-L&f random relative to X}.

Let r{ = degyw(MLR). It is known that 0 <r; < 1.
Let rq = degy (Necq MLR(0()).
Let by = degyw({X € NN | MLR(X) € MLR(0(®)1).

It can be shown that all of these Muchnik degrees are distinct.
Clearly the Muchnik degrees r, and b, are specific and natural,
provided the ordinal number « is specific and natural.
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Some specific, natural, Muchnik degrees, part 2 (continued).

Remark. The Muchnik degree rq is relevant for

the reverse mathematics of measure theory.

The Muchnik degrees b, for a < culCK are relevant for
the reverse mathematics of measure-theoretic regularity.

Definition. Let A\ = the fair coin probability measure on {0, 1}N.
Say that X € NN is a-regularizing if for each Zg—I—Q set Sp40 C {0, 1N
we can find a 9 set S5 C S, such that A(SX) = A(Sut2).

Theorem (Simpson 2008). by = degyw({X | X is a-regularizing}).

For a = 1 this is due to Kjos-Hanssen/Miller/Solomon 2006.
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Some specific, natural, Muchnik degrees, part 3.

Given f: N — N, say that Z € {0, 1}N is strongly f-complex if
JeVn (KA(Zn) > f(n) —¢). In other words, f specifies a lower bound
for the a priori Kolmogorov complexity of the first n bits of Z.

Let ky = degw({Z € {0,1}Y | Z is strongly f-complex}).

Clearly the Muchnik degree kf is specific and natural,
provided f is specific and natural. Also, by Schnorr's Theorem,
we have ki = r7 where the 1 in k; denotes the identity function.

It is known that k; < kg <r; holds for many pairs f,g: N — N.

In particular, it holds when f and g are recursive functions such that
vn(f(n) < f(n+1) < f(n)+1and f(n)+ 2l09s f(n) < g(n) < n).
This result is due to Hudelson 2014 building on Miller 2011.

Examples. Let f(n) =n/3 and g(n) = n/2,
or let f(n) = In and g(n) = In,
or let f(n) =logzn and g(n) = logs n,
or let f(n) =log>n and g(n) = logon + 21ogsl0gs n,
or let f(n) =n—2log>n and g(n) = n.
18



A picture of Dy, the lattice of Muchnik degrees.
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Some specific, natural, Muchnik degrees, part 4.

There are many more examples of specific, natural Muchnik degrees.

Definition. A partial recursive function 3 :C N — N is said to be
linearly universal if for each partial recursive function ¢ .C N — N
there exist a,b € N such that Vn (¢(n) ~ ¥ (an +b)).

An example of such a function is ¥ (2¢(2n + 1)) ~ we(n).

Let d = degyw (D) where D = {Z € NN | Vn (Z(n) % ¥ (n))
for some linearly universal, partial recursive function }.

Let drec = degw({Z € D | Z is recursively bounded}).
It is known that 0 < drgc < d <r; (Ambos-Spies et al, 2004).

Remark. Clearly d = degw({Z € NN | Z is diagonally nonrecursive}),
and drec = degw({Z | Z diagonally nonrecursive, recursively bounded}).
However, the definition of d and drgc in terms of linear universality
IS preferable when it comes to refinements in terms of growth rates.

See the theorem on the next slide.
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Some specific, natural, Muchnik degrees, part 4 (continued).

Recall that D = {Z e NN | Vn (Z(n) % ¥ (n))
for some linearly universal, partial recursive function }.

Definition. For h: N —» N let dj, =degy({Z € D | Vn(Z(n) < h(n))}).
Remark. If h is bounded and vn (2 < h(n)), then d, = 1.

Theorem (Greenberg/Miller 2011; Miller). Let h be

an unbounded recursive function such that Vn (2 < h(n) < h(n+1)).
1. drec < dj < 1.

2. If 3, h(n)~! < 0o then dj, < ry.

3. If 3, h(n)~! = oo then dj, is incomparable with r, for all a > 1.

Remark. The degrees dj, where h is as in 2 above are closely
intertwined with the degrees kf where f is an unbounded recursive
function such that Vn (f(n) <n). In particular we have drgc = krec
where krgc is the infimum of the k;'s for all such f.

It would be nice to have a more precise hierarchy theorem for the d;'s
which would be analogous to Hudelson’s theorem for the kf’s.
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Another picture of Dy, the lattice of Muchnik degrees.

Each oval represents a specific, natural, Muchnik degree.
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Originally this picture was intended to represent the Computability Menagerie,
as developed by Bjgrn Kjos-Hanssen, Joseph S. Miller, and Mushfeg Khan.

The inhabitants of the menagerie are downwardly closed sets of Turing degrees.

The complements of these sets are upwardly closed sets of Turing degrees,
i.e., Muchnik degrees. So this is also a picture of the Muchnik degrees.
The picture itself is courtesy of Joseph S. Miller.
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Yet another picture of Dy, the lattice of Muchnik degrees.

Each box represents a specific, natural

Muchnik degree.
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This picture is courtesy of Bjgrn Kjos-Hanssen.
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Degrees of unsolvability: a three-hour tutorial.

Hour 1. Turing degrees, Muchnik degrees, and the Muchnik topos.
Hour 2. Examples of Turing degrees and Muchnik degrees.

Hour 3. Muchnik degrees of nonempty I‘I? subsets of {0, 11},

Our notation for degree structures:

D+ = the upper semilattice of all Turing degrees.

Dw = the lattice of all Muchnik degrees.

E1 = the upper semilattice of r. e. Turing degrees.

the lattice of Muchnik degrees of I‘I? sets # 0 in {0, 1},
= the lattice of Muchnik degrees of MY sets = § in N,
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The sublattices &y and Sy.

Since Dy is large and complicated, it is natural to consider sublattices
which are more manageable. Two such sublattices are

Ew = {degw(P) |0 #= P C {0,1} and P is N9}
and

Sw = {degw(P) |0 #= P C NN and P is N%}.
We compare &w to & = the upper semilattice of r.e. Turing degrees.

There is a strong analogy between &y and &£+

(a) Ew is the smallest natural sublattice of Dw, just as
ET is the smallest natural subsemilattice of D.

(b) There is a natural embedding a+ inf(a,1) : E < Ew.

(c) The Splitting Theorem and the Density Theorem,
due to Sacks for &, also hold for &w. See below.

However, £y has an advantage over &7

Ew contains many specific, natural degrees associated with specific,
natural, foundationally interesting problems. In contrast, &4 is not
known to contain any such degrees other than 0’ and 0.
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Some facts about &y and Sy.

Fact 1. The bottom and top degrees in E&w are 0 and 1 respectively.
The bottom degree in Sw is 0, but there is no top degree in Sw.

Fact 2. Sw = {degw(S) |##= S C N and S is =9}.

This is important because it implies that many specific, natural,
Muchnik degrees belong to Sw. Examples:

° O(O‘),ba € Sw for all recursive ordinal numbers «.
e ri,rp, ks € Sw for all recursive f : N — N satisfying vn (f(n) < n).
e d,drgc,dy, € Sw for all recursive h : N — N satisfying Vn (2 < h(n)).

Fact 3 (Simpson 2007). &w is an initial segment of Sw.

This is important because it gives us a specific, natural, lattice
homomorphism s — inf(s,1) : Sw — &w. This homomorphism carries
all of the specific, natural, Muchnik degrees in Sw to specific, natural,
Muchnik degrees in &w. Hence &y contains many such degrees.
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This is a picture of &w. Each black dot except inf(a, 1)
represents a specific, natural, Muchnik degree in Ew.
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Proof of Fact 3.
Fact 3 says that £w is an initial segment of Sw.

To prove Fact 3, it suffices to prove:

Given nonempty MY sets P C {0, 1} and S C N,
we can find a nonempty N¢ set Q C {0,1,2}"
such that degy(Q) = inf(degw (P), degw(S)).

To prove this, let U C {0,1}* and V C N* be computable trees

such that P = {paths through U} and S = {paths through V}.

Let Q@ = {paths through W} where W C {0,1,2}*
IS the computable tree consisting of all sequences of the form

o1 (2)" - (2)op_17(2) on
with n > 1 and o1,...,0n_1,0n € U and (Jo1|,...,|lon—1]) € V.

It is easy to check that this works.
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The Splitting and Density Theorems for &y.

Splitting Theorem (Binns 2003). &w satisfies the Splitting Theorem:
Ve(x >0=Judv(u <z and v <z and x = sup(u,v))).

Density Theorem (Binns/Shore/Simpson 2014). &y satisfies the
Density Theorem: VaxVy(z <y = Jz(z < 2z < y)).

We now sketch the proof that £&w is dense. Since &w is an initial
segment of Sw, it will suffice to prove that Sw is dense.

The proof will be presented in a modular way, with several lemmas.

Lemma 1. Let Q@ C NN be MY such that @ £w {0}. Then for all Y ¢ NN
there exists Y ¢ NN such that ' @Y =1 0/ @Y =1 Y’ and Q £w {Y}.

Lemma 1 is proved like the Friedberg Jump Theorem,
with extra steps taken to insure that Q £w {Y'}.
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Lemma 2. Given MY predicates U,V C NN x NN, we can find a N
predicate U C NN x NN such that for each X with {Z | V(X, 2)} £w {X}
there is a homeomorphism Y — Y of {Y | U(X,Y)} onto {Y |U(X,Y)}
such that X’@Y =1 X'@Y =1 (X@Y) and {Z | V(X,2)} £¢w {X @ Y}.

Lemma 2 is proved by uniformly relativizing Lemma 1 to X, taking
extra care to insure that {Y | U(X,Y)} is uniformly I‘I? relative to X.

Lemma 3. Suppose Kleene's O is not hyperarithmetical in X.
Then, there is a nonempty MY set S C NN such that S 4w {X'}.

Lemma 3 follows from the Kleene Normal Form Theorem
plus the fact that Kleene's O is M7.

We now prove that Sw is dense. Given N9 sets P,Q C NN

such that P <w @, to find a MY set R C N such that P <w R <w Q.

By the Gandy Basis Theorem, let Xg € P be such that Kleene's O is
not hyp. in Xg. By Lemma 3 let S C N be nonempty N9 such that

S £w {X4}. Apply Lemma 2 with U(X Y)=Y €S and V(X Z)=7 € Q.
Let R={X®Y | X ePand U(X,Y)}UQ where U is as in

the conclusion of Lemma 2. It is easy to check that this works.
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Details of the construction for Lemmas 1 and 2.

We give the unrelativized construction, with X = 0.
In presenting the construction, we do not assume Q £w {0}.

Let V be a recursive tree such that Q = {paths through V}.

To each string o we associate an infinite sequence of strings
10 C 711 C---C75C 7541 C---. Later we shall write Fs(o) = 7s.

Stage 0. Let 19 = () and ig =1 and ng = 0.

Stage s+ 1. Let n=mns. If n > |o| let = = 75 and iy = is and ny = ng
for allt > s+ 1. If n < |o| we proceed depending on the value of is.

Case 1: is=1. Let 7441 = 75" (0(n)) and i,y =2 and ny4 1 = ns.

Case 2: ig=2. If (31 D 75) ({n}|T7_|(n) 1) let 7,41 = the least such T,
otherwise let 74,41 = 75. Either way let 1,41 = 3 and ngy1 = ns.

Case 3! is=3. If (3T D 715) ({n}s C{n}" € V)
let 7,41 = the least such 7, and let i34 1 = 3 and ng41 = ns.
Otherwise let 7,41 =75 and 1,41 =1 and ng4 1 = ns + 1.

This completes the definition of 74 = Fs(o).
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Note that Fs: o +— 75 : N* = N* is uniformly <4 0’ and monotone,
i.e., pC o and s <t imply Fs(p) C Fi (o).

Define Y — Y NN 5 NN by ¥V = F(Y) = U,,, Us Fs(Y Im).

Given a M9 set U C NN, consider the N3’ “set U={V|YeUl)

For each Y € U and each n € N we have Y |n C Fs(Y |m) N

for some s §§n and some m such that Y [m is a substring of Y [n,

ie.,, Yim = (Y ({j1),...,Y(m)) for some j1 < --- < jm < n. Therefore,

/ ~
in the I‘I:O))O definition of U, the unbounded existential quantifiers may
/

be replaced by bounded ones. Thus U is actually I‘I(l)O

= {Y | Vi3j R(Y,i,j)} where R is recursive. Our M¢ set is then

(7 ={Y @ Y*|Vi(Y*(i) = the least j such that R(Y,4%,j) holds)}.

hence MY, say

Assume now that @ «w {0}. In this situation, our construction is just
the standard proof of the Friedberg Jump Theorem, with extra steps
(Case 3) to insure that @ £w {Y}. Thus 0'a@Y =7 O’@Y’ =1 Y’ and

Y =Y is a homeomorphism of U onto U. For each Y € U let Y*(z) =
the least j such that R(Y,z,]) holds. Then Y*<+Y,soY =Y @®Y* has
the same properties as Y, i.e., Q Lw {Y} and /@Y =1 0®Y =7 Y’ and
Y —Yisa homeomorphism of U onto U.

This completes the proof!
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Summary of this 3-hour tutorial.

. D+ = the semilattice of Turing degrees.

. &1 = the semilattice of recursively enumerable Turing degrees.

. Dw = D1 = the lattice of Muchnik degrees.

. Eéw = the lattice of Muchnik degrees of nonempty I‘I(l) sets in {0, 1}V,
. There is a natural embedding of D+ into its completion Dy.

. There is a natural embedding of &4 into éw.

. The Splitting and Density Theorems hold for &t and for Ew.

. There is a strong analogy between &4 and &w.

© 0 N OO 00 & W NN B

. In D+ the only known specific, natural, degrees are among
0,0.0”, ... 0 olatl)

[
o

. In Dw there are many other specific, natural degrees
including ry's and by's.

[ —
[ —

. In &1 the only known specific, natural degrees are 0 and 0’.

=
N

. In &w there are many specific, natural degrees including 1,r1 = k1,
k =d, kREC = dRECv kfa dha dSIOW7 iﬂf(I‘Q, 1), inf(ba, 1) where a < w1CK.

T hank you for your attention!
33



