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Degrees of unsolvability: a three-hour tutorial.

Hour 1. Turing degrees, Muchnik degrees, the Muchnik topos.

Hour 2. Examples of Turing degrees and Muchnik degrees.

Hour 3. Muchnik degrees of nonempty Π0
1 subsets of {0,1}N.

Our notation for degree structures:

DT = the upper semilattice of all Turing degrees.

Dw = the lattice of all Muchnik degrees.

ET = the upper semilattice of recursively enumerable Turing degrees.

Ew = the lattice of Muchnik degrees of nonempty Π0
1 subsets of {0,1}N.

Sw = the lattice of Muchnik degrees of nonempty Π0
1 subsets of NN.
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Motivation: a non-rigorous “calculus of problems.”

Given a “problem” P , it is natural to hope for an “easy solution” of P .

If P is “unsolvable” (i.e., has no “easy solution”), it is natural to ask

“how unsolvable” P is. We therefore seek to measure the “amount” or

“degree” of “unsolvability” which is inherent in P .

Let us say that P is “reducible” to another “problem” Q if, given any

“solution” of Q, we can use it to “easily” find a “solution” of P .

If P and Q are “reducible” to each other, we say that they have

the same “degree of unsolvability.”

——

There are many ways to convert these non-rigorous ideas into

rigorous ones. We focus on two closely related degree structures:

the Turing degrees, DT, and the Muchnik degrees, Dw.

A Turing degree measures the unsolvability of a decision problem.

A Muchnik degree measures the unsolvability of a mass problem.

The Muchnik degrees are the completion of the Turing degrees.
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Turing degrees versus Muchnik degrees. A decision problem has

only one solution. A mass problem may have many different solutions.

A decision problem is a real X ∈ NN. Intuitively, X represents

the problem of “finding” or “computing” X.

This problem has only one solution, namely, X.

For X, Y ∈ NN we say that X is Turing reducible to Y , abbreviated

X ≤T Y , if X is computable using Y as a Turing oracle.

A Turing degree is an equivalence class of decision problems under

mutual Turing reducibility. The Turing degree of X is denoted

degT(X). The partial ordering of all Turing degrees is denoted DT.

A mass problem is a subset of NN. Intuitively, P ⊆ NN represents

the problem of “finding” or “computing” some member of P .

Thus any X ∈ P is a solution of this problem.

For P,Q ⊆ NN we say that P is Muchnik reducible to Q, abbreviated

P ≤w Q, if ∀Y (Y ∈ Q⇒ ∃X (X ∈ P and X ≤T Y )). In other words, using

any solution of Q as an oracle, we can compute some solution of P .

A Muchnik degree is an equivalence class of mass problems under

mutual Muchnik reducibility. The Muchnik degree of P is denoted

degw(P). The partial ordering of all Muchnik degrees is denoted Dw.
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Turing degrees versus Muchnik degrees (continued).

Recall DT = the partial ordering of all Turing degrees,

and Dw = the partial ordering of all Muchnik degrees.

Identifying degT(X) with degw({X}), we have

an order-preserving embedding degT(X) 7→ degw({X}) : DT →֒ Dw.

This induces an order-reversing one-to-one correspondence

between Muchnik degrees and upwardly closed sets of Turing degrees.

The upwardly closed set corresponding to p ∈ Dw is {a ∈ DT | p ≤ a}.
Thus we may identify Dw = D̂T = the completion of DT.

In particular, Dw is a complete and completely distributive lattice.

DT is not even a lattice. However, DT is an upper semilattice.

Namely, for all X,Y ∈ NN the Turing degree degT(X ⊕ Y ) = sup(a,b)

is the supremum (= l.u.b.) of degT(X) = a and degT(Y ) = b.

Also, DT has a bottom element, namely 0 = degT(0).

Our embedding of DT into Dw preserves these features.
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The completion of a partial ordering.

Our identification of Dw as the completion of DT

is an instance of a general construction.

Let K be any partial ordering, i.e., partially ordered set.

Let K̂ be the set of upwardly closed subsets of K, partially ordered by

reverse inclusion, i.e., U ≤ V if and only if U ⊇ V.
Then K̂ is a complete and completely distributive lattice,

called the completion of K. Identifying a ∈ K with the upwardly closed

set Ua = {x ∈ K | x ≥ a}, we see that K is a subordering of K̂,

namely, a ≤ b if and only if Ua ≤ Ub.

For P ⊆ NN let P ∗ = {Y | (∃X ∈ P) (X ≤T Y )} =

the Turing upward closure of P . It is easy to check that

P ≤w Q if and only if P ∗ ⊇ Q∗.

Thus Dw = D̂T = the completion of DT, and Muchnik degrees

are identified with upwardly closed sets of Turing degrees.
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A digression: suborderings of DT and Dw.

Since DT and Dw are large and complicated, it is natural to consider

suborderings which are more manageable. Two such suborderings are

ET = {degT(χA) | A is a recursively enumerable subset of N}
and

Ew = {degw(P) | P is a nonempty Π0
1 subset of {0,1}N}.

There is a strong analogy between ET and Ew.

ET is the smallest natural subsemilattice of DT, and

Ew is the smallest natural sublattice of Dw.

The bottom and top degrees degrees in ET are 0 = degT(0) and

0′ = degT(χ0′), where 0 = χ∅ and 0′ = H = the set of Turing machine

programs which eventually halt.

The bottom and top degrees in Ew are 0 and 1, where 0 = degw({0})
and 1 = degw(C(PA)) where C(PA) is the set of complete and consistent

theories which are extensions of first-order Peano arithmetic.

There is a natural semilattice embedding a 7→ inf(a, 1) : ET →֒ Ew
(Simpson 2007). This embedding preserves 0 and ≤ and sup.

However, it does not preserve inf, even when inf(a,b) exists in ET.
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The most famous structural results for ET are

the Splitting Theorem and the Density Theorem.

Splitting Theorem for ET (Sacks 1962). ET satisfies

∀x (x > 0 ⇒ ∃u ∃v (u < x and v < x and x = sup(u, v))).

Density Theorem for ET (Sacks 1964). ET satisfies

∀x∀y (x < y ⇒ ∃z (x < z < y)).

There are now analogous results for Ew:

Splitting Theorem for Ew (Binns 2003). Ew satisfies

∀x (x > 0 ⇒ ∃u ∃v (u < x and v < x and x = sup(u, v))).

Density Theorem for Ew (Binns/Shore/Simpson 2014). Ew satisfies

∀x∀y (x < y ⇒ ∃z (x < z < y)).

In Hour 3 I will sketch the proof of the Density Theorem for Ew.

The Dense Splitting Theorem

∀x∀y (x < y ⇒ ∃u ∃v (x < u < y and x < v < y and y = sup(u, v)))

does not hold for ET (Lachlan, Annals of Mathematical Logic, 1976).

It is unknown whether the Dense Splitting Theorem holds for Ew.
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The Muchnik topos.

We may view DT as a topological space in which the open sets are
the upwardly closed subsets of DT. Recall also that we have identified
the upwardly closed subsets of DT with the Muchnik degrees.
Therefore, by McKinsey/Tarski 1944, the Muchnik lattice Dw

is a topological model of intuitionistic propositional calculus.

For any topological space T , a sheaf over T consists of a topological
space X together with a local homeomorphism p : X → T . A sheaf

morphism from a sheaf p : X → T to another sheaf q : Y → T is a
continuous function f : X → Y such that p(x) = q(f(x)) for all x ∈ X .

Let Sh(T ) = the category of sheaves and sheaf morphisms over T . By
Fourman/Scott 1979, Sh(T ) is a topos and a model of intuitionistic
higher-order logic. In this model, the truth values are open subsets of T .

Applying the above construction to the topological space DT,
we obtain Sh(DT) = the Muchnik topos. In this model of
intuitionistic mathematics, the truth values are the Muchnik degrees.

We offer Sh(DT) as a rigorous implementation of Kolmogorov’s
1932 non-rigorous interpretation of intuitionistic mathematics as
a “calculus of problems.”
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The real number system(s) in the Muchnik topos.

Consider the topological space RC = R×DT with basic open sets

{x} × U where x ∈ R and U ⊆ DT is upwardly closed. There is a

projection map p : RC → DT given by p(x, a) = a. Thus RC is a sheaf

over DT representing the Cauchy/Dedekind real number system.

An interesting subsheaf of RC is RM = {(x, a) ∈ RC | degT(x) ≤ a},
the sheaf of Muchnik reals, which supports an analog of computable

analysis. Intuitively, a Cauchy/Dedekind real can exist anywhere within

the Turing degrees, but a Muchnik real can exist only where we have

enough Turing oracle power to compute it.

Theorem (Basu/Simpson 2014). Let x, y, z be variables ranging over

Muchnik reals, let w be a variable ranging over functions from Muchnik

reals to Muchnik reals, and let Φ(x, y) be a formula

in which w and z do not occur. Then, the Muchnik topos Sh(DT)

satisfies a Choice and Bounding Principle

(∀x∃yΦ(x, y)) ⇒ (∃w ∃z ∀x (wx ≤T x⊕ z and Φ(x,wx))).

Corollary of the proof. If Sh(DT) satisfies ∀x∃yΦ(x, y),

then Sh(DT) satisfies ∃w ∀x (wx ≤T x and Φ(x, wx)).
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Degrees of unsolvability: a three-hour tutorial.

Hour 1. Turing degrees, Muchnik degrees, and the Muchnik topos.

Hour 2. Examples of Turing degrees and Muchnik degrees.

Hour 3. Muchnik degrees of nonempty Π0
1 subsets of {0,1}N.

Our notation for degree structures:

DT = the upper semilattice of all Turing degrees.

Dw = the lattice of all Muchnik degrees.

ET = the upper semilattice of recursively enumerable Turing degrees.

Ew = the lattice of Muchnik degrees of nonempty Π0
1 subsets of {0,1}N.

Sw = the lattice of Muchnik degrees of nonempty Π0
1 subsets of NN.
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Some specific, natural, Turing degrees.

Given a decision problem X ∈ NN, let X ′ ∈ NN encode

the halting problem relative to X, i.e., with X used as a Turing oracle.

If a = degT(X), let a′ = degT(X ′). It can be shown that

a′ is independent of the choice of X such that degT(X) = a.

The operator a 7→ a′ : DT → DT is called the jump operator .

Generalizing Turing’s proof of unsolvability of the halting problem,

we have a < a′. In other words, the decision problem X ′

is “more unsolvable than” the decision problem X.

Inductively we define a(0) = a and a(n+1) = (a(n))′ for all n ∈ N.
Extending this induction into the transfinite, we can define a(α)

where α ranges over a large initial segment of the ordinal numbers.

The naturalness of this transfinite induction is proved in a series of

theorems due to Spector, Sacks, Jockusch/Simpson, and Hodes.

In particular, we have a transfinite sequence of Turing degrees

0 < 0′ < 0′′ < · · · < 0(α) < 0(α+1) < · · ·.

Apart from these, no specific natural Turing degrees are known!!!
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A picture of DT, the upper semilattice of Turing degrees.

0
(α+1)

0
(α)

...
...

0

0’

0’’

0’’’

Apart from the Turing degrees 0 < 0′ < 0′′ < · · · < 0(α) < 0(α+1) < · · ·,
no specific, natural Turing degrees are known.
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A limitation of the Turing degrees.

There are many specific, natural, algorithmically unsolvable problems

to which it is impossible to assign a Turing degree.

Example. Let T be a consistent, recursively axiomatizable theory

which is effectively essentially undecidable. For instance,

T = PA = Z1 = first-order arithmetic,

or T = Z2 = second-order arithmetic,

or T = ZFC = Zermelo/Fraenkel set theory,

or T = Q = Robinson’s arithmetic,

or T = any consistent, recursively axiomatizable theory

which is an extension of one of these.

Any consistent, complete theory which extends T is undecidable.

Let C(T) be the problem of finding such an extension.

The mass problem C(T) is specific, natural, and unsolvable,

but there is no Turing degree corresponding to C(T).

The way to overcome this limitation of the Turing degrees is

to use mass problems and Muchnik degrees.
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Some specific, natural, Muchnik degrees, part 1.

Of course, the specific, natural, Turing degrees

0 < 0′ < 0′′ < . . . < 0(α) < 0(α+1) < · · ·
may also be viewed as specific, natural, Muchnik degrees.

Another specific, natural, Muchnik degree is 1 = degw(C(PA)).

Remark. The Muchnik degree degw(C(T)) is independent of

our choice of T (so long as T is consistent, recursively axiomatizable,

and effectively essentially undecidable). Thus we have

1 = degw(C(PA)) = degw(C(Z2)) = degw(C(ZFC)) = degw(C(Q)).

The Turing degrees ≥ 1 are often called “PA-degrees,” but they could

equally well be called “Z2-degrees” or “ZFC-degrees” or “Q-degrees.”

The jump operator applies to Muchnik degrees.

Given p = degw(P) we define p′ = degw({X ′ | X ∈ P}).

The Kleene Basis Theorem implies that 0 < 1 < 0′.
The Low Basis Theorem implies that 1′ = 0′.
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Some specific, natural, Muchnik degrees, part 2.

Many specific, natural, Muchnik degrees arise from

algorithmic randomness and Kolmogorov complexity.

Let MLR = {Z ∈ {0,1}N | Z is Martin-Löf random}.

More generally, for X ∈ NN let

MLR(X) = {Z ∈ {0,1}N | Z is Martin-Löf random relative to X}.

Let r1 = degw(MLR). It is known that 0 < r1 < 1.

Let rα = degw(
⋂
ξ<αMLR(0(ξ))).

Let bα = degw({X ∈ NN | MLR(X) ⊆ MLR(0(α))}).

It can be shown that all of these Muchnik degrees are distinct.

Clearly the Muchnik degrees rα and bα are specific and natural,

provided the ordinal number α is specific and natural.
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Some specific, natural, Muchnik degrees, part 2 (continued).

Remark. The Muchnik degree r1 is relevant for

the reverse mathematics of measure theory.

The Muchnik degrees bα for α < ωCK
1 are relevant for

the reverse mathematics of measure-theoretic regularity.

Definition. Let λ = the fair coin probability measure on {0,1}N.
Say that X ∈ NN is α-regularizing if for each Σ0

α+2 set Sα+2 ⊆ {0,1}N

we can find a Σ
0,X
2 set SX2 ⊆ Sα+2 such that λ(SX2 ) = λ(Sα+2).

Theorem (Simpson 2008). bα = degw({X | X is α-regularizing}).

For α = 1 this is due to Kjos-Hanssen/Miller/Solomon 2006.
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Some specific, natural, Muchnik degrees, part 3.

Given f : N → N, say that Z ∈ {0,1}N is strongly f-complex if

∃c∀n (KA(Z↾n) ≥ f(n)− c). In other words, f specifies a lower bound

for the a priori Kolmogorov complexity of the first n bits of Z.

Let kf = degw({Z ∈ {0,1}N | Z is strongly f-complex}).

Clearly the Muchnik degree kf is specific and natural,

provided f is specific and natural. Also, by Schnorr’s Theorem,

we have k1 = r1 where the 1 in k1 denotes the identity function.

It is known that kf < kg ≤ r1 holds for many pairs f, g : N → N.
In particular, it holds when f and g are recursive functions such that

∀n (f(n) ≤ f(n+1) ≤ f(n) + 1 and f(n) + 2 log2 f(n) ≤ g(n) ≤ n).

This result is due to Hudelson 2014 building on Miller 2011.

Examples. Let f(n) = n/3 and g(n) = n/2,

or let f(n) = 3
√
n and g(n) = 2

√
n,

or let f(n) = log3 n and g(n) = log2 n,

or let f(n) = log2 n and g(n) = log2 n+2 log2 log2 n,

or let f(n) = n− 2 log2 n and g(n) = n.
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A picture of Dw, the lattice of Muchnik degrees.
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Some specific, natural, Muchnik degrees, part 4.

There are many more examples of specific, natural Muchnik degrees.

Definition. A partial recursive function ψ :⊆ N → N is said to be

linearly universal if for each partial recursive function ϕ :⊆ N → N

there exist a, b ∈ N such that ∀n (ϕ(n) ≃ ψ(an+ b)).

An example of such a function is ψ(2e(2n+1)) ≃ ϕe(n).

Let d = degw(D) where D = {Z ∈ NN | ∀n (Z(n) 6≃ ψ(n))

for some linearly universal, partial recursive function ψ}.

Let dREC = degw({Z ∈ D | Z is recursively bounded}).

It is known that 0 < dREC < d < r1 (Ambos-Spies et al, 2004).

Remark. Clearly d = degw({Z ∈ NN | Z is diagonally nonrecursive}),
and dREC = degw({Z | Z diagonally nonrecursive, recursively bounded}).
However, the definition of d and dREC in terms of linear universality

is preferable when it comes to refinements in terms of growth rates.

See the theorem on the next slide.
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Some specific, natural, Muchnik degrees, part 4 (continued).

Recall that D = {Z ∈ NN | ∀n (Z(n) 6≃ ψ(n))

for some linearly universal, partial recursive function ψ}.

Definition. For h : N → N let dh = degw({Z ∈ D | ∀n (Z(n) < h(n))}).

Remark. If h is bounded and ∀n (2 ≤ h(n)), then dh = 1.

Theorem (Greenberg/Miller 2011; Miller). Let h be

an unbounded recursive function such that ∀n (2 ≤ h(n) ≤ h(n+1)).

1. dREC < dh < 1.

2. If
∑
n h(n)

−1 < ∞ then dh < r1.

3. If
∑
n h(n)

−1 = ∞ then dh is incomparable with rα for all α ≥ 1.

Remark. The degrees dh where h is as in 2 above are closely

intertwined with the degrees kf where f is an unbounded recursive

function such that ∀n (f(n) ≤ n). In particular we have dREC = kREC

where kREC is the infimum of the kf ’s for all such f .

It would be nice to have a more precise hierarchy theorem for the dh’s

which would be analogous to Hudelson’s theorem for the kf ’s.
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Another picture of Dw, the lattice of Muchnik degrees.

Each oval represents a specific, natural, Muchnik degree.
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Originally this picture was intended to represent the Computability Menagerie,
as developed by Bjørn Kjos-Hanssen, Joseph S. Miller, and Mushfeq Khan.
The inhabitants of the menagerie are downwardly closed sets of Turing degrees.
The complements of these sets are upwardly closed sets of Turing degrees,
i.e., Muchnik degrees. So this is also a picture of the Muchnik degrees.
The picture itself is courtesy of Joseph S. Miller.
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Yet another picture of Dw, the lattice of Muchnik degrees.

Each box represents a specific, natural, Muchnik degree.
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Degrees of unsolvability: a three-hour tutorial.

Hour 1. Turing degrees, Muchnik degrees, and the Muchnik topos.

Hour 2. Examples of Turing degrees and Muchnik degrees.

Hour 3. Muchnik degrees of nonempty Π0
1 subsets of {0,1}N.

Our notation for degree structures:

DT = the upper semilattice of all Turing degrees.

Dw = the lattice of all Muchnik degrees.

ET = the upper semilattice of r. e. Turing degrees.

Ew = the lattice of Muchnik degrees of Π0
1 sets 6= ∅ in {0,1}N.

Sw = the lattice of Muchnik degrees of Π0
1 sets 6= ∅ in NN.
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The sublattices Ew and Sw.

Since Dw is large and complicated, it is natural to consider sublattices
which are more manageable. Two such sublattices are

Ew = {degw(P) | ∅ 6= P ⊆ {0,1}N and P is Π0
1}

and

Sw = {degw(P) | ∅ 6= P ⊆ NN and P is Π0
1} .

We compare Ew to ET = the upper semilattice of r.e. Turing degrees.

There is a strong analogy between Ew and ET:

(a) Ew is the smallest natural sublattice of Dw, just as
ET is the smallest natural subsemilattice of DT.

(b) There is a natural embedding a 7→ inf(a, 1) : ET →֒ Ew.

(c) The Splitting Theorem and the Density Theorem,
due to Sacks for ET, also hold for Ew. See below.

However, Ew has an advantage over ET:

Ew contains many specific, natural degrees associated with specific,
natural, foundationally interesting problems. In contrast, ET is not
known to contain any such degrees other than 0′ and 0.
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Some facts about Ew and Sw.

Fact 1. The bottom and top degrees in Ew are 0 and 1 respectively.

The bottom degree in Sw is 0, but there is no top degree in Sw.

Fact 2. Sw = {degw(S) | ∅ 6= S ⊆ NN and S is Σ0
3}.

This is important because it implies that many specific, natural,

Muchnik degrees belong to Sw. Examples:

• 0(α),bα ∈ Sw for all recursive ordinal numbers α.

• r1, r2,kf ∈ Sw for all recursive f : N → N satisfying ∀n (f(n) ≤ n).

• d,dREC,dh ∈ Sw for all recursive h : N → N satisfying ∀n (2 ≤ h(n)).

Fact 3 (Simpson 2007). Ew is an initial segment of Sw.

This is important because it gives us a specific, natural, lattice

homomorphism s 7→ inf(s, 1) : Sw → Ew. This homomorphism carries

all of the specific, natural, Muchnik degrees in Sw to specific, natural,

Muchnik degrees in Ew. Hence Ew contains many such degrees.
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This is a picture of Ew. Each black dot except inf(a, 1)

represents a specific, natural, Muchnik degree in Ew.
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Proof of Fact 3.

Fact 3 says that Ew is an initial segment of Sw.

To prove Fact 3, it suffices to prove:

Given nonempty Π0
1 sets P ⊆ {0,1}N and S ⊆ NN,

we can find a nonempty Π0
1 set Q ⊆ {0,1,2}N

such that degw(Q) = inf(degw(P), degw(S)).

To prove this, let U ⊆ {0,1}∗ and V ⊆ N∗ be computable trees

such that P = {paths through U} and S = {paths through V }.

Let Q = {paths through W} where W ⊆ {0,1,2}∗
is the computable tree consisting of all sequences of the form

σ1
a〈2〉a · · ·a〈2〉aσn−1

a〈2〉aσn

with n ≥ 1 and σ1, . . . , σn−1, σn ∈ U and 〈|σ1|, . . . , |σn−1|〉 ∈ V .

It is easy to check that this works.
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The Splitting and Density Theorems for Ew.

Splitting Theorem (Binns 2003). Ew satisfies the Splitting Theorem:

∀x (x > 0 ⇒ ∃u ∃v (u < x and v < x and x = sup(u, v))).

Density Theorem (Binns/Shore/Simpson 2014). Ew satisfies the

Density Theorem: ∀x∀y (x < y ⇒ ∃z (x < z < y)).

We now sketch the proof that Ew is dense. Since Ew is an initial

segment of Sw, it will suffice to prove that Sw is dense.

The proof will be presented in a modular way, with several lemmas.

Lemma 1. Let Q ⊆ NN be Π0
1 such that Q �w {0}. Then for all Y ∈ NN

there exists Ŷ ∈ NN such that 0′ ⊕ Y ≡T 0′ ⊕ Ŷ ≡T Ŷ ′ and Q �w {Ŷ }.

Lemma 1 is proved like the Friedberg Jump Theorem,

with extra steps taken to insure that Q �w {Ŷ }.
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Lemma 2. Given Π0
1 predicates U, V ⊆ NN × NN, we can find a Π0

1
predicate Û ⊆ NN × NN such that for each X with {Z | V (X,Z)} �w {X}
there is a homeomorphism Y 7→ Ŷ of {Y | U(X, Y )} onto {Ŷ | Û(X, Ŷ )}
such that X ′ ⊕ Y ≡T X ′ ⊕ Ŷ ≡T (X ⊕ Ŷ )′ and {Z | V (X,Z)} �w {X ⊕ Ŷ }.

Lemma 2 is proved by uniformly relativizing Lemma 1 to X, taking

extra care to insure that {Ŷ | Û(X, Ŷ )} is uniformly Π0
1 relative to X.

Lemma 3. Suppose Kleene’s O is not hyperarithmetical in X.

Then, there is a nonempty Π0
1 set S ⊆ NN such that S �w {X ′}.

Lemma 3 follows from the Kleene Normal Form Theorem

plus the fact that Kleene’s O is Π1
1.

We now prove that Sw is dense. Given Π0
1 sets P,Q ⊆ NN

such that P <w Q, to find a Π0
1 set R ⊆ NN such that P <w R <w Q.

By the Gandy Basis Theorem, let X0 ∈ P be such that Kleene’s O is

not hyp. in X0. By Lemma 3 let S ⊆ NN be nonempty Π0
1 such that

S �w {X ′
0}. Apply Lemma 2 with U(X, Y ) ≡ Y ∈ S and V (X,Z) ≡ Z ∈ Q.

Let R = {X ⊕ Ŷ | X ∈ P and Û(X, Ŷ )} ∪Q where Û is as in

the conclusion of Lemma 2. It is easy to check that this works.
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Details of the construction for Lemmas 1 and 2.

We give the unrelativized construction, with X = 0.

In presenting the construction, we do not assume Q �w {0}.

Let V be a recursive tree such that Q = {paths through V }.

To each string σ we associate an infinite sequence of strings

τ0 ⊆ τ1 ⊆ · · · ⊆ τs ⊆ τs+1 ⊆ · · ·. Later we shall write Fs(σ) = τs.

Stage 0. Let τ0 = 〈〉 and i0 = 1 and n0 = 0.

Stage s+1. Let n = ns. If n ≥ |σ| let τt = τs and it = is and nt = ns
for all t ≥ s+1. If n < |σ| we proceed depending on the value of is.

Case 1: is = 1. Let τs+1 = τsa〈σ(n)〉 and is+1 = 2 and ns+1 = ns.

Case 2: is = 2. If (∃τ ⊇ τs) ({n}τ|τ |(n) ↓) let τs+1 = the least such τ ,

otherwise let τs+1 = τs. Either way let is+1 = 3 and ns+1 = ns.

Case 3: is = 3. If (∃τ ⊃ τs) ({n}τs ⊂ {n}τ ∈ V )

let τs+1 = the least such τ , and let is+1 = 3 and ns+1 = ns.

Otherwise let τs+1 = τs and is+1 = 1 and ns+1 = ns+1.

This completes the definition of τs = Fs(σ).
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Note that Fs : σ 7→ τs : N∗ → N∗ is uniformly ≤T 0′ and monotone,

i.e., ρ ⊆ σ and s ≤ t imply Fs(ρ) ⊆ Ft(σ).

Define Y 7→ Ỹ : NN → NN by Ỹ = F(Y ) =
⋃
m

⋃
s Fs(Y ↾m).

Given a Π0
1 set U ⊆ NN, consider the Π

0,0′
3 set Ũ = {Ỹ | Y ∈ U}.

For each Y ∈ U and each n ∈ N we have Ỹ ↾n ⊆ Fs(Y ↾m)

for some s ≤ 3n and some m such that Y ↾m is a substring of Ỹ ↾n,
i.e., Y ↾m = 〈Ỹ (j1), . . . , Ỹ (jm)〉 for some j1 < · · · < jm < n. Therefore,

in the Π
0,0′
3 definition of Ũ , the unbounded existential quantifiers may

be replaced by bounded ones. Thus Ũ is actually Π
0,0′
1 , hence Π0

2, say

Ũ = {Ỹ | ∀i∃j R(Ỹ , i, j)} where R is recursive. Our Π0
1 set is then

Û = {Ỹ ⊕ Ỹ ∗ | ∀i (Ỹ ∗(i) = the least j such that R(Ỹ , i, j) holds)}.

Assume now that Q �w {0}. In this situation, our construction is just

the standard proof of the Friedberg Jump Theorem, with extra steps

(Case 3) to insure that Q �w {Ỹ }. Thus 0′ ⊕ Y ≡T 0′ ⊕ Ỹ ′ ≡T Ỹ ′ and
Y 7→ Ỹ is a homeomorphism of U onto Ũ . For each Y ∈ U let Ỹ ∗(i) =

the least j such that R(Ỹ , i, j) holds. Then Ỹ ∗ ≤T Ỹ , so Ŷ = Ỹ ⊕ Ỹ ∗ has

the same properties as Ỹ , i.e., Q �w {Ŷ } and 0′ ⊕ Y ≡T 0′ ⊕ Ŷ ≡T Ŷ ′ and
Y 7→ Ŷ is a homeomorphism of U onto Û .

This completes the proof!
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Summary of this 3-hour tutorial.

1. DT = the semilattice of Turing degrees.

2. ET = the semilattice of recursively enumerable Turing degrees.

3. Dw = D̂T = the lattice of Muchnik degrees.

4. Ew = the lattice of Muchnik degrees of nonempty Π0
1 sets in {0,1}N.

5. There is a natural embedding of DT into its completion Dw.

6. There is a natural embedding of ET into Ew.

7. The Splitting and Density Theorems hold for ET and for Ew.

8. There is a strong analogy between ET and Ew.

9. In DT the only known specific, natural, degrees are among
0, 0′, 0′′, . . . , 0(α), 0(α+1), . . ..

10. In Dw there are many other specific, natural degrees

including rα’s and bα’s.

11. In ET the only known specific, natural degrees are 0 and 0′.
12. In Ew there are many specific, natural degrees including 1, r1 = k1,

k = d,kREC = dREC,kf ,dh,dslow, inf(r2, 1), inf(bα, 1) where α < ωCK
1 .

Thank you for your attention!
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