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Abstract

Given a problem P , one associates to P a degree of unsolvability, i.e.,

a quantity which measures the amount of algorithmic unsolvability which

is inherent in P . We focus on two degree structures: the semilattice of

Turing degrees, DT, and its completion, Dw = D̂T, the lattice of Muchnik

degrees. We emphasize specific, natural degrees and their relationship

to reverse mathematics. We show how Muchnik degrees can be used to

classify tiling problems and symbolic dynamical systems of finite type.

We describe how the category of sheaves over Dw forms a model of in-

tuitionistic mathematics, known as the Muchnik topos. This model is a

rigorous implementation of Kolmogorov’s nonrigorous 1932 interpretation

of intuitionism as a “calculus of problems.”
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1 Turing degrees

The existence of unsolvable1 mathematical problems was discovered by Turing
[77]. Indeed, Turing exhibited a specific, natural example2 of such a problem:
the halting problem for Turing machines. Later, in the 1950s and 1960s, it
was discovered that there are specific, natural, unsolvable problems in virtually
every branch of mathematics: number theory (Hilbert’s Tenth Problem [14]),
geometry (the homeomorphism problem for finite simplicial complexes, the dif-
feomorphism problem for compact manifolds [42, Appendix]), group theory (the
word problem [1] and the triviality problem [47] for finitely presented groups),
combinatorics (the problem of tileability of the plane with a finite set of tiles
[6, 49]), mathematical logic (the validity problem for predicate calculus [12, 77],
the decision problem for first-order arithmetic [75]), and even elementary calcu-

lus (the problem of integrability in finite terms [48]).
A scheme for classifying unsolvable problems was developed by Post [46]

and Kleene/Post [34]. Two reals3 X and Y are said to be Turing equivalent if
each is computable using the other as a Turing oracle. The Turing degree of a
real is its equivalence class under this equivalence relation. Each of the specific,
natural, unsolvable problems mentioned above is a decision problem and may
therefore be straightforwardly described or “encoded”4 as a real. It was then

1By unsolvable we mean algorithmically unsolvable, i.e., not solvable by a Turing program.
2We are not offering a rigorous definition of what is meant by “specific and natural.”

However, it is well known that considerations of specificity and naturalness play an important
role in mathematics. Without such considerations, it would be difficult or impossible to
pursue the ideal of “exquisite taste” in mathematical research, as famously enunciated by von
Neumann.

3In this paper we take reals to be points in the Baire space NN, i.e., functions X : N → N
where N = {0, 1, 2, . . .} = the natural numbers.

4More specifically, each of the mentioned problems amounts to the question of deciding
whether or not a given string of symbols from a fixed finite alphabet belongs to a particular
set of such strings. The problem is then identified with the characteristic function of the set
of Gödel numbers of the strings which belong to the set.
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shown that each of these problems is of the same Turing degree as the halting
problem. This Turing degree is denoted 0′. Thus the specific Turing degree 0′

is extremely useful and important.
Given a real X , the Turing degree of X is denoted degT(X). If a = degT(X)

and b = degT(Y ) are the Turing degrees of reals X and Y respectively, we write
X ≤T Y or a ≤ b to mean that Y is “at least as unsolvable as”X in the following
sense: X is computable using Y as a Turing oracle. We also write X <T Y or
a < b to mean that X ≤T Y and Y �T X . Let DT be the set of all Turing
degrees. Clearly ≤ is a partial ordering of DT, and every pair of degrees in DT

has a supremum, i.e., a least upper bound. In other words, DT is a semilattice.
Kleene and Post proved that there are infinitely many degrees in DT which are
less than 0′, and there are uncountably many other degrees in DT which are
incomparable with 0′. Thus DT has a rich algebraic structure. However, despite
recent remarkable progress [59, 71], no one has yet discovered a specific, natural
example of an unsolvable problem of Turing degree � 0′.

Given a realX , let X ′ be a real which encodes the halting problem relative to

X , i.e., with X used as a Turing oracle. If a is the Turing degree of X , let a′ be
the Turing degree of X ′. It can be shown that a′ is independent of the choice of
X such that degT(X) = a. The operator a 7→ a′ : DT → DT is called the Turing
jump operator. Generalizing Turing’s proof of the unsolvability of the halting
problem, one shows that a < a′. In other words, X ′ is “more unsolvable than”
X . Inductively we write a(0) = a and a(n+1) = (a(n))′ for all natural numbers
n. Extending this induction into the transfinite, it is possible to define a(α)

where α ranges over a large initial segment of the ordinal numbers including the
constructibly countable ordinal numbers. We then have a(α) < a(β) whenever
α < β. See [53, Part A] and [27, 60].

Let 0 be the bottom degree in DT, i.e., the Turing degree of any solvable
problem. We then have a transfinite hierarchy of specific, natural Turing degrees

0 < 0′ < 0′′ < · · · < 0(α) < 0(α+1) < · · ·

where α ranges over a large initial segment of the ordinal numbers [60]. More-
over, this hierarchy of specific, natural Turing degrees has been useful for the
classification of unsolvable mathematical problems. See for instance [43] and
[50, §14.8] and §4 below. However, no other specific, natural Turing degrees are
known.

The semilattice DT is large and complicated, so it is reasonable to examine
subsemilattices which are hopefully more manageable. One such subsemilattice
has been studied in great depth. A Turing degree is said to be recursively

enumerable5 if it is the Turing degree of the characteristic function of a subset of
N which is the range of a recursive function. Let ET be the subsemilattice of DT

consisting of the recursively enumerable Turing degrees. The top and bottom
degrees in ET are 0′ and 0. It is known that ET is structurally rich. Two
key results due to Sacks [51, 52] are the Splitting Theorem6 and the Density

5A.k.a., computably enumerable [73].
6The Sacks Splitting Theorem says that ET satisfies ∀x (x > 0 ⇒ ∃u∃v (u < x and v < x
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Theorem7, and many other results have been obtained [37, 38, 58, 72]. For
instance, the Turing degree of the first-order theory of ET is 0(ω) [45]. However,
except for 0′ and 0 no specific, natural, recursively enumerable Turing degrees
are known.

2 Muchnik degrees

There are many specific, natural, unsolvable problems to which it is impossible
to assign a Turing degree.

As an example, let T be an effectively essentially undecidable theory. For
instance, we could take T = PA = Z1 = first-order arithmetic, or T = Z2 =
second-order arithmetic [62], or T = ZFC = Zermelo/Fraenkel set theory [25],
or T = Q = Robinson’s arithmetic [75], or T = any consistent recursively
axiomatizable extension of one of these. Consider the problem C(T ) of “finding”
a complete and consistent theory which extends T . A solution of the problem
would be any such theory. Lindenbaum’s Lemma implies that such theories
exist, and by [75] no such theory is algorithmically decidable.8 In this sense the
problem C(T ) is algorithmically unsolvable. On the other hand, the problem
C(T ) cannot correspond to a Turing degree, because for any solution X of C(T )
there exists a solution Y of C(T ) such that Y <T X .

In order to overcome this limitation of the Turing degrees, we now extend
DT to its completion, Dw, the lattice of Muchnik degrees.

A mass problem is defined to be a set of reals.9 The idea here is that a mass
problem P “represents” (i.e., is the solution set of) the problem of “finding” or
“computing” some real X which belongs to P . Accordingly, a mass problem
P is said to be unsolvable if it contains no Turing computable real, i.e., if
P ∩ REC = ∅ where REC = {X | X is computable}. Following the same idea,
we generalize the notion of Turing reducibility as follows. For mass problems P
and Q, we say that P is Muchnik reducible to Q, abbreviated P ≤w Q, if every
solution of Q can be used as a Turing oracle to compute some solution of P . In
other words, P ≤w Q if and only if ∀Y (Y ∈ Q⇒ ∃X (X ∈ P and X ≤T Y )).10

We say that P is Muchnik equivalent to Q, abbreviated P ≡w Q, if P ≤w Q and
Q ≤w P . The Muchnik degree of P , written degw(P ), is the equivalence class
of P under ≡w. Let Dw be the set of all Muchnik degrees, partially ordered by
letting degw(P ) ≤ degw(Q) if and only if P ≤w Q. It is easy to see that Dw is
a complete and completely distributive lattice. Given a real X , we identify X
with the mass problem {X} = the singleton set whose only member is X . Thus
degT(X) = degw({X}) and DT is now a subset of Dw.

The relationship between DT and Dw may be viewed as an instance of a
general construction. Namely, for any partially ordered set K let K̂ be the

and sup(u, v) = x)).
7The Sacks Density Theorem says that ET satisfies ∀x ∀y (x < y ⇒ ∃z (x < z < y)).
8When speaking of decidable theories, we identify a theory with the characteristic function

X ∈ {0, 1}N of the set of Gödel numbers of theorems of the theory.
9This concept is from Medvedev [39]. As in footnote 3 a real is a function X ∈ NN.

10This is Muchnik’s notion of weak reducibility [41, Definition 2].
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set of upwardly closed subsets of K partially ordered by reverse inclusion, i.e.,
U ≤ V if and only if U ⊇ V . Identifying a ∈ K with the upwardly closed set
Ua = {x ∈ K | x ≥ a} ∈ K̂, we see that K is a subordering of K̂, i.e., a ≤ b if

and only if Ua ≤ Ub. Thus K̂ is a complete and completely distributive lattice,
the completion of K. There is a unique isomorphism of Dw onto D̂T which
extends the identity map on DT, and in this sense Dw is the completion of DT.
The upshot here is that Muchnik degrees can be identified with upwardly closed
sets of Turing degrees.11 This remark will be important in §5 below.

In the above example, let us identify C(T ) with the mass problem {X | X
is a complete and consistent extension of T }. Under this identification, C(T )
is Muchnik reducible to the halting problem.12 However, the halting problem
is not Muchnik reducible to C(T ), because the halting problem has a Turing
degree while C(T ) does not. Thus, letting 1 = the Muchnik degree of C(T ), we
have 0 < 1 < 0′. Furthermore, the particular Muchnik degree 1 = degw(C(T ))
can be characterized abstractly in a way which does not depend on T . We now
see that 1 is a very specific, very natural, very important Muchnik degree which
is not a Turing degree.

In addition to the Muchnik degree 1 and the Turing degrees 0(α) for ordinal
numbers α = 0, 1, 2, . . . , ω, ω + 1, . . ., there are many other specific, natural
Muchnik degrees. Here are some examples and references.

1. Let λ be the fair coin probability measure on {0, 1}N. A set S ⊆ {0, 1}N

is said to be effectively null if S ⊆
⋂

n Un for some uniformly effectively
open sequence of sets Un such that λ(Un) ≤ 2−n for all n. A real Z ∈
{0, 1}N is said to be Martin-Löf random [16, 44] if it does not belong to
any effectively null set. Let r1 = degw({Z ∈ {0, 1}N | Z is Martin-Löf
random}). It is not difficult to show that 0 < r1 < 1.

2. More generally, for any constructibly countable ordinal number α, let
rα = degw({Z | (∀ξ < α) (Z is Martin-Löf random relative to 0(ξ))}).
It is not difficult to show that 0 = r0 < r1 < r2 < · · · < rα < rα+1 < · · ·.
Moreover, each rα for α ≥ 2 is incomparable with 1.

3. A partial recursive function ψ : ⊆ N → N is said to be universal if for each
partial recursive function ϕ : ⊆ N → N there exists a recursive function
p : N → N such that ϕ(n) ≃ ψ(p(n)) for all n.13 Fix such a function ψ and
let d = degw({Z ∈ NN | Z∩ψ = ∅}) and dREC = degw({Z ∈ NN | Z∩ψ =
∅ and Z is recursively bounded}). Clearly d and dREC are independent14

of our choice of ψ. By [3, 26] we have 0 < d < dREC < r1.

11For a more precise statement, see [5, Theorem 5.8].
12This follows from a theorem of Kleene [33, page 398]. See also [29, 57].
13Here E1 ≃ E2 means that E1 and E2 are both undefined or both defined and equal.
14Let ϕn, n ∈ N be a fixed, standard, partial recursive enumeration of the partial recursive

functions. A function Z ∈ NN is said to be diagonally nonrecursive [3, 23, 26, 32, 65] if
Z ∩ ψ = ∅ where ψ is the well known diagonal function, defined by ψ(n) ≃ ϕn(n). Letting
DNR = {Z ∈ NN | Z is diagonally nonrecursive} and DNRREC = {Z ∈ DNR | Z is recursively
bounded}, we have d = degw(DNR) and dREC = degw(DNRREC).
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4. Given a recursive function f : N → N, define Z ∈ {0, 1}N to be f -complex

if ∃c ∀n (K(Z↾{1, . . . , n}) > f(n)− c) where K denotes Kolmogorov com-
plexity. In this way each specific, natural,15 recursive function f gives
rise to a specific, natural Muchnik degree kf = degw({Z ∈ {0, 1}N | Z
is f -complex}), and there is also kREC = degw({Z ∈ {0, 1}N | Z is f -
complex for some unbounded recursive function f}). By [32] we have
kREC = dREC, and by [16, Theorem 6.2.3] we have k1 = r1 where
1 : N → N is the identity function. Building on the methods of Miller [40],
Hudelson [24] has shown that dREC < kf < kg ≤ r1 holds for many pairs
of unbounded recursive functions f, g. In particular, this holds whenever
∀n (f(n) ≤ f(n+ 1) ≤ f(n) + 1 and f(n) + 2 log2 f(n) ≤ g(n) ≤ n).

5. Let MLRX = {Z ∈ {0, 1}N | Z is Martin-Löf random relative to X}.
We say that X is LR-reducible to Y , abbreviated X ≤LR Y , if MLRX ⊇
MLRY [16, 44]. Letting bα = degw({Y | 0(α) ≤LR Y }), it is not difficult
to show that 0 = b0 < b1 < b2 < · · · < bα < bα+1 < · · ·. On the
other hand, by [68] we know that the Muchnik degrees bα for α ≥ 1 are
incomparable with the Muchnik degrees d, 1, and rα for all α ≥ 1.

6. A partial recursive function ψ : ⊆ N → N is said to be linearly universal if
it is “universal via linear functions,” i.e., for each partial recursive function
ϕ : ⊆ N → N there exist a, b ∈ N such that ϕ(n) ≃ ψ(an + b) for all n.
Let D = {Z ∈ NN | Z ∩ψ = ∅ for some linearly universal partial recursive
function ψ}, and letDREC = {Z ∈ D | Z is recursively bounded}). Clearly
degw(D) = d and degw(DREC) = dREC where d and dREC are as above.
However, letting Dh = {Z ∈ D | Z is h-bounded} where h is a specific
recursive function, we get a family of Muchnik degrees dh = degw(Dh)
which are of considerable interest [64, §10] [31]. In particular, for any
unbounded recursive function h such that ∀n (1 ≤ h(n) ≤ h(n + 1)) we
know by [3, 23] and [7, §7.3] that dREC < dh < 1, and if

∑
n h(n)

−1 <∞
then dh < r1, and if

∑
n h(n)

−1 = ∞ then dh is incomparable with rα
for all α ≥ 1. Also of interest is the Muchnik degree dslow = degw({Z |
Z ∈ Dh for some recursive function h such that ∀n (h(n) ≤ h(n+ 1)) and∑

n h(n)
−1 = ∞}).

7. There are many other examples of specific, natural Muchnik degrees. See
for instance the Computability Menagerie16 [30]. Our choice of examples
in this paper is oriented toward §3 below.

3 The lattices Ew and Sw

The lattice Dw is large and complicated, so it is desirable to consider more man-
ageable sublattices. The smallest such sublattice which comes immediately to

15For example, f(n) could be n/2 or n/3 or
√
n or 3

√
n or log2 n or log3 n or log2 log2 n,

etc., or f could be the inverse Ackermann function.
16The inhabitants of the Computability Menagerie are downwardly closed sets of Turing

degrees, and the complements of such sets are essentially the same thing as Muchnik degrees.
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mind is the countable lattice Ew consisting of the Muchnik degrees of nonempty,
effectively closed subsets of {0, 1}N. The explicit study of Ew was undertaken
only relatively recently [8, 10, 61, 63, 64] but was implicit in some much older
literature [22, 28, 29, 54, 55]. By [55] the top and bottom degrees in Ew are
1 and 0, and by [10] every countable distributive lattice is lattice-embeddable
into Ew. The only Turing degree in Ew is 0, but there is an obvious analogy

Ew
Dw

=
ET
DT

and indeed the Splitting Theorem and the Density Theorem hold for Ew [8, 9].
The Turing degree of the first-order theory of Ew is known to be ≥ 0(ω) [56] and

conjectured to be = 0(ωCK

1
+ω) [13, page 127] [69, Remark 3.2.3].

An advantage of Ew over ET is that Ew contains a great variety of spe-
cific, natural Muchnik degrees in addition to its top and bottom degrees 1 and
0. In particular, it is not difficult [65, §3] to show that the Muchnik degrees
d,dREC,kf , r1,dh, and dslow which were discussed in §2 belong to Ew.

f

k       = d

k

w1 = deg  (C(PA))

d

inf(b  ,1)α

inf(b      ,1)+1α

inf(r  ,1)2

slowd

d
h

0

1

inf(b  ,1)2
inf(b ,1)

r1

inf(a,1)

REC      REC

Figure 1: A picture of Ew.

Also of interest is the countable lattice Sw consisting of the Muchnik degrees
of nonempty, effectively closed subsets of NN. An easy argument [69, Lemma
3.3.5] shows that Sw has an alternative characterization as the lattice of Muchnik
degrees of nonempty, lightface Σ0

3 subsets of NN. This is important, because
it implies that Sw contains many specific, natural Muchnik degrees beyond
those which are already in Ew. In particular, the Muchnik degree r2 which was
discussed in §2 belongs to Sw, as do the Turing degrees 0(α) and the Muchnik
degrees bα for all recursive ordinal numbers α < ωCK

1 [68].
Trivially Ew is a sublattice of Sw, and by [69, Theorem 3.3.1] we know that

Ew is an initial segment of Sw. This is important, because it means that we
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have a specific, natural, lattice homomorphism s 7→ inf(s,1) : Sw → Ew. With
this homomorphism, each of the specific, natural Muchnik degrees in Sw has a
specific, natural image in Ew. In particular, the Muchnik degrees inf(r2,1) [65,
§3] and inf(bα,1) for all ordinal numbers α < ωCK

1 [66, 68] belong to Ew.
Clearly ET is a subsemilattice of Sw, and by the Arslanov Completeness

Criterion [26, Theorem 1] (see also [65, §5]) our homomorphism of Sw onto Ew
is one-to-one when restricted to ET. Thus we have a semilattice embedding
a 7→ inf(a,1) : ET →֒ Ew which carries the top and bottom degrees 0′,0 ∈ ET
to the top and bottom degrees 1,0 ∈ Ew. Unfortunately, the range of this
embedding does not appear to contain any specific, natural Muchnik degrees
other than 1 and 0. Thus the problem of finding a specific, natural, recursively
enumerable Turing degree in the range 0 < a < 0′ remains open.

Figure 1 is a picture of Ew. In this picture, a is any recursively enumerable
Turing degree in the range 0 < a < 0′. The black dots other than inf(a,1)
denote some of the specific, natural Muchnik degrees which we have discussed.

4 Applications

We briefly mention an application of Ew to tiling problems. A Wang tile is a
unit square with colored edges. Given a finite set A of Wang tiles, let PA be the
problem of tiling the plane with copies of tiles from A. More formally, PA is the
set of mappings X : Z×Z → A such that for all (i, j) ∈ Z×Z the right edge of
X(i, j) matches the left edge of X(i+ 1, j) and the top edge of X(i, j) matches
the bottom edge of X(i, j + 1). Clearly degw(PA) ∈ Ew provided PA 6= ∅. It
turns out [17, 70] that conversely, every Muchnik degree in Ew is degw(PA) for
some finite set A of Wang tiles. This result plus the existence of an infinite
independent set of degrees in Ew has a recursion-theory-free consequence for
symbolic dynamics. Namely, there exists an infinite collection of 2-dimensional
symbolic dynamical systems of finite type which are strongly independent of
each other with respect to symbolic products, symbolic disjoint unions, and
symbolic morphisms. For details see [70, §3].

We briefly mention the connection between degrees of unsolvability and re-
verse mathematics. From my book [62] it is clear that basic recursion-theoretic
concepts such as Turing reducibility [62, Remark I.7.5], the Turing jump opera-
tor [62, Remark I.3.4], basis theorems [62, §§VII.1,VIII.2], the hyperarithmetical
hierarchy [62, §VIII.3], the hyperjump [62, Remark I.5.4], and algorithmic ran-
domness [62, §X.1] are highly relevant to reverse mathematics. More recently
[68] it emerged that some advanced recursion-theoretic concepts such as LR-
reducibility are also highly relevant to reverse mathematics. Beyond this, there
is an obvious correspondence between the so called “Big Five” subsystems of Z2

[62, Chapters II–VI] and certain degrees of unsolvability. Namely, the systems
RCA0, WKL0, ACA0, ATR0, and Π1

1-CA0 correspond to the Muchnik degrees 0,

1, 0′, 0(α) for α < ωCK
1 , and 0(ωCK

1
) respectively, where ωCK

1 is the least nonre-
cursive ordinal. In addition, the system WWKL0 [62, §X.1] corresponds to the
Muchnik degree r1.
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5 The Muchnik topos

From Medvedev’s 1955 paper introducing mass problems [39] and Muchnik’s
1963 paper introducing Muchnik reducibility [41]17, it is evident that both au-
thors were motivated by Kolmogorov’s nonrigorous 1932 interpretation of in-
tuitionistic propositional calculus as a “calculus of problems” [35, 36]. Kol-
mogorov’s idea was to view intuitionistic propositions as “problems,” and intu-
itionistic proofs of propositions as “solutions” of the corresponding “problems.”
Intuitionistic propositional connectives are then viewed as methods of combin-
ing “problems” to form new “problems.” Two “problems” are viewed as being
“equivalent” if from any solution of either of them a “solution” of the other
can be “easily” or “immediately” extracted. We cannot expect the Law of the
Excluded Middle to hold, because it would mean that for any proposition there
should be an “easy” proof of either the proposition or its negation.

Muchnik’s rigorous implementation of Kolmogorov’s idea [41, Theorem 4] is
based on mass problems, Muchnik reducibility, and lattice operations in Dw.
Given two Muchnik degrees p and q, we interpret p ∧ q as sup(p,q), p ∨ q as
inf(p,q), p ⇒ q as inf({x | sup(p,x) ≥ q}), “true” as 0, “false” as degw(∅),
and p ⊢ q as p ≥ q. For more details and references, see [69, §4] and [67, 74].

Recently Muchnik’s interpretation of intuitionistic propositional calculus [41]
has been extended to an interpretation of intuitionistic mathematics as a whole
[5]. The extension is based on a category which we call the Muchnik topos. The
idea here is to consider DT as a topological space in which the open sets are
the upwardly closed sets of Turing degrees.18 In general, for any topological
space T , a sheaf over T consists of a topological space X together with a local
homeomorphism p : X → T . A sheaf morphism from a sheaf p : X → T to a
sheaf q : Y → T is a continuous function f : X → Y such that p(x) = q(f(x))
for all x ∈ X . The sheaves and sheaf morphisms over T form a category called
Sh(T ). As noted by Fourman and Scott [21], Sh(T ) is a topos and provides
a model of intuitionistic higher-order logic in which the truth values are the
open subsets of T . The Muchnik topos is then the special case Sh(DT) with
truth values in Dw. All of this background material concerning sheaves and
intuitionistic higher-order logic is explained at length in our paper [5].

Within the Muchnik topos Sh(DT), there are two versions of the real number
system R: the sheaf RC = R×DT of Cauchy reals, and the sheaf RM = {(r, a) ∈
RC | degT(r) ≤T a} of Muchnik reals. Roughly speaking, the difference between
RC andRM is that a Cauchy real can exist anywhere within the topological space
DT, but a Muchnik real can exist only where we have enough Turing oracle power
to compute it. For precise definitions, see [5]. It turns out [5, Theorem 5.18]
that the Muchnik topos satisfies a Choice and Bounding Principle:

(∀x∃yΦ(x, y)) ⇒ ∃w ∃z ∀x (wx ≤T (x, z) ∧ Φ(x,wx))

where x, y, z are variables ranging over Muchnik reals, w is a variable ranging
over functions from Muchnik reals to Muchnik reals, and Φ(x, y) is any formula

17See also the English translation in [5, Appendix].
18This topological space was considered by Muchnik [41, page 1332] [5, page 35].
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of intuitionistic higher-order logic in which w and z do not occur. Our Choice
and Bounding Principle reflects a well known intuitonistic idea: if for all real
numbers x there exists a real number y which bears a certain relationship to x,
then there should be a function x 7→ y which computes such a y using x as a
Turing oracle.

We feel that, among various interpretations of intuitionistic mathematics,
our interpretation in terms of the Muchnik topos stands out because of its
relationship to the ideas of Kolmogorov, Medvedev, and Muchnik.
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