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Gödel’s Incompleteness Theorem.

Hilbert’s concern for consistency proofs led to

Gödel’s Second Incompleteness Theorem.

Let T be a theory in the predicate calculus

satisfying certain mild conditions. Then:

1. T is incomplete.

2. The statement “T is consistent” is not a

theorem of T .

(Gödel 1931)

3. The problem of deciding whether a given

formula is a theorem of T is algorithmically

unsolvable.

(Gödel, Turing, Tarski, . . . )
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The Gödel hierarchy.

Let T1, T2 be two theories as above. Define

T1 < T2

if “T1 is consistent” is a theorem of T2.

Usually this is equivalent to saying that T1 is

interpretable in T2 and not vice versa.

This ordering gives a hierarchy of

foundational theories, the Gödel hierarchy.

The Gödel hierarchy is often linear, and it

exhibits other remarkable regularities.

The Gödel hierarchy is a central object of

study in foundations of mathematics.

Reference.

Stephen G. Simpson, The Gödel hierarchy and reverse

mathematics, in Kurt Gödel: Essays for his Centennial,

ASL, Cambridge University Press, Lecture Notes in

Logic 33, 2010, 128–141.
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Stopping points in the Gödel hierarchy.
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Foundational programs.

Several stopping points in the Gödel hierarchy
correspond to venerable foundational
programs in mathematics.

For instance, PRA corresponds to Hilbert’s
program of finitism (Tait 1981).

Since WKL0 is Π0
2-conservative over PRA, we

may say that WKL0 corresponds to a program
of finitistic reductionism. This is interesting
because WKL0 suffices as a foundation for a
remarkably large part of mathematics
(Simpson 1988, 1999).

Similarly, there is a system IR (Feferman
1964) which corresponds to the outer limits
of Hermann Weyl’s program of predicativism.

Since ATR0 is Π1
1-conservative over IR, we may

say that ATR0 represents a program of
predicativistic reductionism

(Friedman/McAloon/Simpson 1982). This is
interesting because ATR0, like WKL0, is one of
the key theories in reverse mathematics.
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Consequences for current research.

Reverse mathematics is ultimately a research

program in the foundations of mathematics.

Therefore, it is desirable to classify

mathematical theorems with an eye to broad

foundational programs corresponding to

major stopping points in the Gödel hierarchy.

For instance, very little is known about the

strength of the Dual Ramsey Lemma, a key

lemma of Ramsey theory which deals with

finite strings of symbols. It is known that the

Dual Ramsey Lemma is provable in Π1
1-CA0

and not in WKL0 (Miller/Solomon 2004). It

would be desirable to close this very wide gap.

Similarly, we know that the first-order part of

RT(2) (Ramsey’s Theorem for pairs) includes

Σ2 bounding and is included in Σ2 induction.

There is an urgent need to close this gap,

because Σ2 bounding is finitistically reducible

while Σ2 induction is not.

6



Consequences, continued.

Similarly, it is unknown whether Hindman’s

Theorem is provable in ACA0. Hindman’s

Theorem says that for every coloring of the

positive integers with finitely many colors,

there is an infinite set such that all the sums

of finite nonempty subsets have the same

color.

Similarly, let FC = Fräıssé’s Conjecture. This

is a theorem due to Laver 1969. It says that

the countable linear orderings are well

quasi-ordered under embeddability. It would

be desirable to know whether FC is provable

in ATR0. Recently Marcone and Montalbán

have made some progress, but the problem

remains unsolved.
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Announcement of recent results.

In the past two years, due to illness,

I have missed two important conferences.

Therefore, I now take this opportunity to

announce some miscellaneous recent results.

1. Reverse mathematics of the Lebesgue

Differentiation Theorem.

2. Reverse mathematics of Peano systems.

3. Propagation of strong f-randomness.

4. Symbolic dynamics, Kolmogorov

complexity, and Ew.

5. Hudelson’s theorem on randomness

extraction.

6. Embedding hyperarithmeticity into Ew
via LR-reducibility.
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Reverse mathematics of the LDT.

Recall the Lebesgue Differentiation Theorem:

For f ∈ L1([0,1]
d), for almost all x ∈ [0,1]d,

(∗) f(x) = lim
Q→x

∫

f dµ

µ(Q)

where Q is a cube containing x.

Theorem (Pathak/Rojas/Simpson 2010).

A point x ∈ [0,1]d is Schnorr random ⇐⇒
(∗) holds for all L1-computable f ∈ L1([0,1]

d).

In the proof we exhibit a one-to-one

correspondence between Schnorr tests and

L1-computable functions. This gives:

Theorem (Pathak/Rojas/Simpson 2010).

Given a computable sequence of

L1-computable functions in L1([0,1]
d),

we can find a dense set of computable points

x ∈ [0,1]d such that (∗) holds for all members

of the sequence. Indeed, any effectively

closed set of computable positive measure

contains such computable points.
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Reverse mathematics of Peano systems.

A system is an ordered triple A, c, f where
A is a set, c ∈ A, and f : A → A.

A system is said to be inductive if it has no
proper subsystem.

A Peano system is an inductive system such
that c /∈ rng(f) and f is one-to-one.

The standard example of a Peano system is
N,0, S where S is the successor function, i.e.,
S(n) = n+1 for all n ∈ N.

Theorem (Dedekind 1888).
Any two Peano systems are isomorphic.

This is the beginning of Dedekind’s
set-theoretic foundation for mathematics
(Dedekind cuts, etc.).

Theorem (Simpson/Yokoyama 2011).
Dedekind’s theorem is equivalent
over RCA

∗
0 to WKL0.

Recall from Simpson/Smith 1986 that
RCA

∗
0 = RCA0 −Σ0

1-induction + ∀n ∃2n.
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Strong f-randomness.

Let f : {0,1}∗ → (−∞,∞) be computable.

Say that x ∈ {0,1}N is strongly f-random if

∃c∀n (KA(x↾{1, . . . , n}) > f(x↾{1, . . . , n})− c).

Here KA = a priori Kolmogorov complexity,

i.e., KA(σ) = − log2m(σ)

where m is a universal left r.e. semimeasure.

Note that KA is similar but not identical to

KP = prefix-free Kolmogorov complexity.

Strong f-randomness has been studied by

Calude/Staiger/Terwijn, APAL, 2006, and

Reimann/Stephan, Proceedings of the 9th

Asian Logic Conference, 2006.

When f(σ) = s|σ| this is closely related to

effective Hausdorff dimension as pioneered

in Reimann’s Ph.D. thesis, 2004.
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Propagation of strong f-randomness.

Theorem 1 (Simpson, 2011).

Assume x is strongly f-random and x ≤T y

where y is Martin-Löf random relative to z.

Then x is strongly f-random relative to z.

Remark. The special case f(σ) = |σ|,
i.e., when x is Martin-Löf random, is due to

Joseph S. Miller and Liang Yu, TAMS, 2008.

Theorem 2 (Simpson, 2011).

Let I be a countable index set. Assume that

(∀i ∈ I) (xi is strongly fi-random).

Then, we can find a PA-oracle z such that

(∀i ∈ I) (xi is strongly fi-random rel. to z).

Remark. The special case |I| = 1, f(σ) = |σ|
is due to Rod Downey, Denis Hirschfeldt,

Joseph S. Miller, and André Nies, JML, 2005.

Remark. I do not know whether Theorems

1 and 2 hold with KA replaced by KP.
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Symbolic dynamics and complexity.

A symbolic system is a nonempty closed set

X ⊆ AG which is shift-invariant,

i.e., x ∈ X, g ∈ G ⇒ xg ∈ X.

Here A is a finite set of symbols, and G is

one of the semigroups Zd or Nd where d ≥ 1.

If G = Zd we write Fn = {−n, . . . , n}d.
If G = Nd we write Fn = {1, . . . , n}d.

Theorem (Simpson 2010).

1. effdim(X) = dim(X) = ent(X).

2. dim(X) ≥ lim sup
n→∞

KP(x↾Fn)

|Fn|
for all x ∈ X.

3. dim(X) = lim
n→∞

KP(x↾Fn)

|Fn|
for many x ∈ X.

Here dim(X) = the Hausdorff dimension of

X, and ent(X) = the entropy of X,

a well known conjugacy invariant

which goes back to Kolmogorov.
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Remark. The proof of the above theorem

involves ergodic theory (the Variational

Principle, Shannon/McMillan/Breiman, etc.)

plus a combinatorial argument which is similar

to the proof of the Vitali Covering Lemma.

Remark. The above theorem seems so

fundamental that it could have been noticed

long ago. Nevertheless, I have not been able

to find it in the literature. So far as I can tell,

everything in the theorem is new, except

the following result of Furstenberg 1967:

dim(X) = ent(X) provided G = N.

The proof of this special case is much easier.

Remark. The above theorem is an outcome

of my discussions at Penn State during

February–April 2010 with many people

including John Clemens, Mike Hochman,

Dan Mauldin, Jan Reimann, and Sasha Shen.
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Degrees of unsolvability (Muchnik).

Let X be any set of reals. We view X as
a mass problem, viz., the problem of
“finding” some x ∈ X.

In order to interpret “finding,” we use
Turing’s concept of computability.

Accordingly, we say that X is
algorithmically solvable

if X contains some computable real,
or in other words, X ∩REC 6= ∅.

Similarly, we say that X is algorithmically

reducible to Y if each y ∈ Y can be used
as a Turing oracle to compute some x ∈ X.

The degree of unsolvability of X, deg(X),
is the equivalence class of X under
mutual algorithmic reducibility.

Reference:

Albert A. Muchnik, On strong and weak reducibilities

of algorithmic problems, Sibirskii Matematicheskii

Zhurnal, 4, 1963, 1328–1341, in Russian.
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Symbolic dynamics, continued.

I have been applying recursion-theoretic

concepts to obtain new results in symbolic

dynamics. Given a symbolic system X,

the program is to explore the relationship

between familiar dynamical properties of X

and the degree of unsolvability of X,

i.e., its Muchnik degree, deg(X). Note that

deg(X), like ent(X), is a conjugacy invariant.

For example, if X is of finite type and

minimal (i.e., every orbit is dense), then

deg(X) = 0 (Hochman, 2009). More

generally, this holds if X is effectively closed,

i.e., not necessarily of finite type.

It is easy to see that if X is of finite type,

then deg(X) belongs to Ew, the lattice of

Muchnik degrees of nonempty effectively

closed sets in the Cantor space. Conversely,

every degree in Ew is realized in this way

(Simpson 2007).

This is interesting, because Ew is very rich.
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Randomness extraction.

Let f : N → (−∞,∞) be an unbounded

computable function such that

f(n) ≤ f(n+1) ≤ f(n) + 1 for all n.

For example, f(n) could be n/2 or n/3

or
√
n or 3

√
n or logn or logn+ log logn or

log logn or the inverse Ackermann function.

Define kf = deg({x ∈ 2N | x is f-random}),
i.e., ∃c∀n (KP(x↾{1, . . . , n} ≥ f(n)− c).

Theorem (Hudelson 2010). kf < kg

provided f(n) + 2 log f(n) ≤ g(n) for all n.

In other words, there exists an f-random real

with no g-random real Turing reducible to it.

References:

Phil Hudelson, Mass problems and initial segment
complexity, 2010, in preparation.

Joseph S. Miller, Extracting information is hard,
Advances in Mathematics, 226, 2011, 373–384.
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Embedding HYP into Ew.

Let z be a Turing oracle. Define

MLRz = {x ∈ 2N | x is random relative to z}
and KPz(τ) = the prefix-free Kolmogorov

complexity of τ relative to z.

Define y ≤LR z ⇐⇒ MLRz ⊆ MLRy

and y ≤LK z ⇐⇒ ∃c∀τ (KPz(τ) ≤ KPy(τ) + c).

Theorem (Miller/Kjos-Hanssen/Solomon).

We have y ≤LR z ⇐⇒ y ≤LK z.

For each recursive ordinal number α, let
0(α) = the αth iterated Turing jump of 0.
Thus 0(1) = the halting problem, and
0(α+1) = the halting problem relative to 0(α),
etc. This is the hyperarithmetical hierarchy.
We embed it naturally into Ew as follows.

Theorem (Simpson, 2009). 0(α) ≤LR z

⇐⇒ every Σ0
α+2 set includes a Σ

0,z
2 set

of the same measure. Moreover,

letting bα = deg({z | 0(α) ≤LR z}) we have

inf(bα, 1) ∈ Ew and inf(bα, 1) < inf(bα+1, 1).
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History: Kolmogorov 1932 developed his
“calculus of problems” as a nonrigorous

yet compelling explanation of Brouwer’s

intuitionism. Later Medvedev 1955 and

Muchnik 1963 proposed Medvedev degrees
and Muchnik degrees as rigorous versions

of Kolmogorov’s idea.

Some references:

Stephen G. Simpson, Mass problems and randomness,
Bulletin of Symbolic Logic, 11, 2005, 1–27.

Stephen G. Simpson, An extension of the recursively
enumerable Turing degrees, Journal of the London
Mathematical Society, 75, 2007, 287–297.

Stephen G. Simpson, Mass problems and intuitionism,
Notre Dame Journal of Formal Logic, 49, 2008,
127–136.

Stephen G. Simpson, Mass problems and
measure-theoretic regularity, Bulletin of Symbolic
Logic, 15, 2009, 385–409.

Stephen G. Simpson, Medvedev degrees of
2-dimensional subshifts of finite type, to appear in
Ergodic Theory and Dynamical Systems.

Stephen G. Simpson, Entropy equals dimension equals
complexity, 2010, in preparation.

THE END. THANK YOU!
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