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A set in Euclidean space is Fσ if it is the

union of a countable sequence of closed sets.

Also, the Borel sets are obtained from closed

sets by repeatedly taking complements and

countable unions.

Measure-theoretic regularity: Every

Lebesgue measurable set includes an Fσ set of

the same measure. In particular, every Borel

set includes an Fσ set of the same measure.

We investigate metamathematical aspects of

measure-theoretic regularity.

Degrees of unsolvability: We quantify

the “descriptive complexity” or

“computational strength” of the Fσ sets

which are needed in order to implement

measure-theoretic regularity at various levels

of the effective Borel hierarchy.

Reverse mathematics: We calibrate

the “logical strength” of various statements

of measure-theoretic regularity.
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Instead of Euclidean space, it is convenient

to use the Cantor space, {0,1}N.

The effective Borel hierarchy:

Let S be a subset of {0,1}N. S is Σ0
0 if and

only if S is clopen. These sets are indexed in

an obvious way. For each recursive ordinal α,

S is Σ0
α+1 if and only if S =

⋃∞
i=0 Pi where Pi

is Π0
α with an index which is computable as a

function of i. An index of S is an index of

this computable function. S is Π0
α if its

complement is Σ0
α. For limit ordinals α, S is

Σ0
α if and only if S is Σ0

β for some β < α.

This definition relativizes to an arbitrary

Turing oracle X.

Remark. S is Borel if and only if S is Σ
0,X
α

for some Turing oracle X and some α < ωX
1 .

S is Fσ if and only if S is Σ
0,X
2 for some X.

Let X(α) denote the αth Turing jump of X.
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The fair coin measure on {0,1}N is given by

µ(Nσ) = 1/2|σ|. Here σ is a bitstring,

i.e., a finite sequence of 0’s and 1’s.

We are writing Nσ = {Z ∈ {0,1}N | σ ⊂ Z}

and |σ| = the length of σ.

Lemma. Every Σ
0,X
α+2 set includes a Σ

0,X(α)

2

set of the same measure. Conversely, every

Σ
0,X(α)

2 set is Σ
0,X
α+2.

Proof. For α = n see Steven M. Kautz,

PhD thesis, Cornell, 1991. The generalization

to arbitrary α < ωX
1 is routine.

Definition (Nies).

1. X ≤LR Y if RY ⊆ RX. Here

RX = {Z | Z is Martin-Löf random rel. to X}.

2. X ≤LK Y if KY (τ) ≤ KX(τ) + O(1) for all

bitstrings τ . Here KX(τ) = the prefix-free

Kolmogorov complexity of τ relative to X.
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Remark. X ≤T Y implies X ≤LR Y ,

but the converse fails badly.

Theorem. The following are equivalent.

1. X ≤LR Y .

2. X ≤LK Y .

3. Every Σ
0,X
2 set of positive measure

includes a Σ
0,Y
2 set of positive measure.

Theorem. The following are equivalent.

1. X ≤LR Y and X ≤T Y ′.

2. Every Σ
0,X
2 set includes a Σ

0,Y
2 set

of the same measure.

These results are due to Kjos-Hanssen
and Kjos-Hanssen/Miller/Solomon in
2005 and 2006 building on earlier work
of Dobrinen/Simpson concerning
almost everywhere domination and
measure-theoretic regularity.

Thus LR-reducibility is closely related to
measure-theoretic regularity.
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Summarizing the above results, we have:

Theorem. The following are equivalent.

1. X(α) ≤LR Y and X(α) ≤T Y ′.

2. Every Σ
0,X
α+2 set includes a Σ

0,Y
2 set

of the same measure.

Recently we improved this to:

Theorem (Simpson 2009).

The following are equivalent.

1. X(α) ≤LR Y and X ≤T Y ′.

2. Every Σ
0,X
α+2 set includes a Σ

0,Y
2 set

of the same measure.

In particular:

Theorem (Simpson 2009).

The following are equivalent.

1. 0(α) ≤LR Y .

2. Every Σ0
α+2 set includes a Σ

0,Y
2 set

of the same measure.
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These recent improvements are based on

the following technical lemmas concerning

LR-reducibility.

Lemma (Simpson 2009).

Suppose A ≤T X and X is a Σ
0,A
3 singleton.

Then X ≤LR Y implies X ′ ≤T A ⊕ Y ′.

Cor. X(α) ≤LR Y implies X(α+1) ≤T X ⊕ Y ′.

Cor. 0(α) ≤LR Y implies 0(α+1) ≤T Y ′.

Lemma (Simpson 2009).

If S is Σ0
3 then

SLR = the LR-upward closure of S

= {Y | (∃X ∈ S) (X ≤LR Y )}

is again Σ0
3.

Cor. For each recursive ordinal α, the set

Bα = {Y | 0(α) ≤LR Y }

is Σ0
3.
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Degrees of unsolvability:

A mass problem is a set of Turing oracles,

P ⊆ {0,1}N.

We say that P is weakly reducible to Q,

written P ≤w Q, if for each Y ∈ Q

there exists X ∈ P such that X ≤T Y .

The weak degree of P , written degw(P),

is the equivalence class of P under

mutual weak reducibility.

The weak degrees form a lattice, Dw.

Idea: P is a “problem”. The elements of P

are the “solutions” of P . P is “reducible” to

Q if each “solution” of Q can be used as a

Turing oracle to find some “solution” of P .

Two “problems” are equivalent if each is

“reducible” to the other.

Remark. Muchnik introduced Dw

in 1963 in order to rigorously explicate

Kolmogorov’s informal 1932 interpretation

of intuitionism as a “calculus of problems.”
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A sublattice of Dw:

In recent years I have been studying a

sublattice of Dw which I call Ew. Namely,

Ew is the lattice of weak degrees of mass

problems associated with nonempty Π0
1

subsets of {0,1}N. It turns out that Ew is

extremely useful for classifying unsolvable

mathematical problems. In particular, Ew

contains many, specific, natural degrees of

unsolvability which are of interest from the

viewpoint of foundations of mathematics.

Let 1 and 0 denote the top and bottom

degrees in Ew. A handy technical lemma is:

Lemma (Simpson 2004).

If s = degw(S) where S is Σ0
3,

then inf(s, 1) belongs to Ew.
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This applies to measure-theoretic regularity,

because for each recursive ordinal α,

the mass problem

{Y | 0(α) ≤LR Y } = {Y | every Σ0
α+2 set

includes a Σ
0,Y
2 set of the same measure}

is Σ0
3.

Letting

bα = degw({Y | 0(α) ≤LR Y })

we have:

Theorem (Simpson 2009). The weak

degrees inf(bα, 1) belong to Ew. Moreover,

for α > 0 these degrees are distinct from

one another and incomparable with

previously known degrees in Ew including

r1 = degw({Z | Z is Martin-Löf random})

and

d = degw({f | f is diagonally nonrecursive}).
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A picture of Ew. Here a = any r.e. degree,

b = measure-theoretic regularity,

r = randomness, q = Hausdorff dimension,

d = diagonal nonrecursiveness.
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Applications to reverse mathematics:

Applications to reverse mathematics follow,

because many specific degrees in

Dw and Ew are correlated to specific

subsystems of second-order arithmetic. In

particular ACA0 ≈ 0′, WKL0 ≈ 1, WWKL0 ≈ r1.

Recall that ACA0 and WKL0 are members of

the “Big Five.” WWKL0 is a weaker system

which has been highly relevant for

the reverse mathematics of measure theory.

Definition. Let M be an ω-model of RCA0.

Let S be a set in Euclidean space.

1. S is M-Borel if S is Σ
0,X
α for some

X ∈ M and α < ωX
1 .

2. S is M-Fσ if S is Σ
0,Y
2 for some Y ∈ M .

3. M is an MTR-model if every M-Borel set

includes an M-Fσ set of the same measure.

Note: MTR = “measure-theoretic regularity.”
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Lemma. M is an MTR-model if and only if

(∀X ∈ M) (∀α < ωX
1 ) (∃Y ∈ M) (X(α) ≤LR Y ).

Cor. If M |= ATR0 then M is an MTR-model.

Using our new results on LR-reducibility,
we can build interesting MTR-models.

Theorem (Simpson 2009). We can find

MTR-models M1, M2, M3, M4 satisfying

RCA0 + ¬WWKL0 and WWKL0 + ¬WKL0 and

WKL0 +¬ACA0 and ACA0 +¬ATR0 respectively.

Moreover, these models can be made to

satisfy measure-theoretic regularity at all

levels of the Borel hierarchy

corresponding to countable well-orderings

with a small amount of transfinite induction.

Tentative conclusion:

The reverse mathematics of

measure-theoretic regularity appears to be

somewhat orthogonal to the Gödel hierarchy

including the “Big Five” subsystems of

second-order arithmetic.
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