Measure-Theoretic Regularity, Degrees of Unsolvability, and Reverse Mathematics

Stephen G. Simpson Pennsylvania State University http://www.math.psu.edu/simpson/ simpson@math.psu.edu

NSF-DMS-0600823, NSF-DMS-0652637, Grove Endowment, Templeton Foundation

> Reverse Mathematics Workshop University of Chicago November 6–8, 2009

A set in Euclidean space is F_{σ} if it is the union of a countable sequence of closed sets. Also, the Borel sets are obtained from closed sets by repeatedly taking complements and countable unions.

Measure-theoretic regularity: Every Lebesgue measurable set includes an F_{σ} set of the same measure. In particular, every Borel set includes an F_{σ} set of the same measure.

We investigate metamathematical aspects of measure-theoretic regularity.

Degrees of unsolvability: We quantify the "descriptive complexity" or "computational strength" of the F_{σ} sets which are needed in order to implement measure-theoretic regularity at various levels of the effective Borel hierarchy.

Reverse mathematics: We calibrate the "logical strength" of various statements of measure-theoretic regularity. Instead of Euclidean space, it is convenient to use the Cantor space, $\{0,1\}^{\mathbb{N}}$.

The effective Borel hierarchy:

Let *S* be a subset of $\{0,1\}^{\mathbb{N}}$. *S* is Σ_0^0 if and only if *S* is clopen. These sets are indexed in an obvious way. For each recursive ordinal α , *S* is $\Sigma_{\alpha+1}^0$ if and only if $S = \bigcup_{i=0}^{\infty} P_i$ where P_i is Π_{α}^0 with an index which is computable as a function of *i*. An index of *S* is an index of this computable function. *S* is Π_{α}^0 if its complement is Σ_{α}^0 . For limit ordinals α , *S* is Σ_{α}^0 if and only if *S* is Σ_{β}^0 for some $\beta < \alpha$. This definition relativizes to an arbitrary Turing oracle *X*.

Remark. *S* is Borel if and only if *S* is $\Sigma_{\alpha}^{0,X}$ for some Turing oracle *X* and some $\alpha < \omega_1^X$. *S* is F_{σ} if and only if *S* is $\Sigma_2^{0,X}$ for some *X*.

Let $X^{(\alpha)}$ denote the α th Turing jump of X.

The fair coin measure on $\{0,1\}^{\mathbb{N}}$ is given by $\mu(N_{\sigma}) = 1/2^{|\sigma|}$. Here σ is a *bitstring*, i.e., a finite sequence of 0's and 1's. We are writing $N_{\sigma} = \{Z \in \{0,1\}^{\mathbb{N}} \mid \sigma \subset Z\}$ and $|\sigma| =$ the length of σ .

Lemma. Every $\Sigma_{\alpha+2}^{0,X}$ set includes a $\Sigma_2^{0,X^{(\alpha)}}$ set of the same measure. Conversely, every $\Sigma_2^{0,X^{(\alpha)}}$ set is $\Sigma_{\alpha+2}^{0,X}$.

Proof. For $\alpha = n$ see Steven M. Kautz, PhD thesis, Cornell, 1991. The generalization to arbitrary $\alpha < \omega_1^X$ is routine.

Definition (Nies).

1. $X \leq_{\mathsf{LR}} Y$ if $\mathsf{R}^Y \subseteq \mathsf{R}^X$. Here

 $\mathsf{R}^X = \{Z \mid Z \text{ is Martin-Löf random rel. to } X\}.$

2. $X \leq_{\mathsf{LK}} Y$ if $\mathsf{K}^{Y}(\tau) \leq \mathsf{K}^{X}(\tau) + O(1)$ for all bitstrings τ . Here $\mathsf{K}^{X}(\tau) =$ the prefix-free Kolmogorov complexity of τ relative to X.

Remark. $X \leq_{\mathsf{T}} Y$ implies $X \leq_{\mathsf{LR}} Y$, but the converse fails badly.

Theorem. The following are equivalent.

- 1. $X \leq_{\mathsf{LR}} Y$.
- 2. $X \leq_{\mathsf{LK}} Y$.
- 3. Every $\Sigma_2^{0,X}$ set of positive measure includes a $\Sigma_2^{0,Y}$ set of positive measure.

Theorem. The following are equivalent.

1.
$$X \leq_{\mathsf{LR}} Y$$
 and $X \leq_{\mathsf{T}} Y'$

2. Every $\Sigma_2^{0,X}$ set includes a $\Sigma_2^{0,Y}$ set of the same measure.

These results are due to Kjos-Hanssen and Kjos-Hanssen/Miller/Solomon in 2005 and 2006 building on earlier work of Dobrinen/Simpson concerning almost everywhere domination and measure-theoretic regularity.

Thus LR-reducibility is closely related to measure-theoretic regularity.

Summarizing the above results, we have:

Theorem. The following are equivalent.

- 1. $X^{(\alpha)} \leq_{\mathsf{LR}} Y$ and $X^{(\alpha)} \leq_{\mathsf{T}} Y'$.
- 2. Every $\Sigma_{\alpha+2}^{0,X}$ set includes a $\Sigma_2^{0,Y}$ set of the same measure.

Recently we improved this to:

Theorem (Simpson 2009). The following are equivalent.

- 1. $X^{(\alpha)} \leq_{\mathsf{LR}} Y$ and $X \leq_{\mathsf{T}} Y'$.
- 2. Every $\Sigma_{\alpha+2}^{0,X}$ set includes a $\Sigma_2^{0,Y}$ set of the same measure.

In particular:

Theorem (Simpson 2009). The following are equivalent.

- 1. $0^{(\alpha)} \leq_{\mathsf{LR}} Y$.
- 2. Every $\Sigma_{\alpha+2}^{0}$ set includes a $\Sigma_{2}^{0,Y}$ set of the same measure.

These recent improvements are based on the following technical lemmas concerning LR-reducibility.

Lemma (Simpson 2009). Suppose $A \leq_T X$ and X is a $\Sigma_3^{0,A}$ singleton. Then $X \leq_{\mathsf{LR}} Y$ implies $X' \leq_{\mathsf{T}} A \oplus Y'$.

Cor. $X^{(\alpha)} \leq_{\mathsf{LR}} Y$ implies $X^{(\alpha+1)} \leq_{\mathsf{T}} X \oplus Y'$.

Cor. $0^{(\alpha)} \leq_{\mathsf{LR}} Y$ implies $0^{(\alpha+1)} \leq_{\mathsf{T}} Y'$.

Lemma (Simpson 2009).

If S is Σ_3^0 then $S^{LR} = \text{the LR-upward closure of } S$ $= \{Y \mid (\exists X \in S) (X \leq_{LR} Y)\}$ is again Σ_3^0 .

Cor. For each recursive ordinal α , the set $B_{\alpha} = \{Y \mid 0^{(\alpha)} \leq_{\mathsf{LR}} Y\}$ is Σ_3^0 .

Degrees of unsolvability:

```
A mass problem is a set of Turing oracles, P \subseteq \{0,1\}^{\mathbb{N}}.
```

We say that *P* is weakly reducible to *Q*, written $P \leq_W Q$, if for each $Y \in Q$ there exists $X \in P$ such that $X \leq_T Y$.

The weak degree of P, written deg_w(P), is the equivalence class of P under mutual weak reducibility.

The weak degrees form a lattice, $\mathcal{D}_{\mathsf{W}}.$

Idea: P is a "problem". The elements of P are the "solutions" of P. P is "reducible" to Q if each "solution" of Q can be used as a Turing oracle to find some "solution" of P. Two "problems" are equivalent if each is "reducible" to the other.

Remark. Muchnik introduced \mathcal{D}_W in 1963 in order to rigorously explicate Kolmogorov's informal 1932 interpretation of intuitionism as a "calculus of problems."

A sublattice of \mathcal{D}_{W} :

In recent years I have been studying a sublattice of \mathcal{D}_W which I call \mathcal{E}_W . Namely, \mathcal{E}_W is the lattice of weak degrees of mass problems associated with nonempty Π_1^0 subsets of $\{0,1\}^{\mathbb{N}}$. It turns out that \mathcal{E}_W is extremely useful for classifying unsolvable mathematical problems. In particular, \mathcal{E}_W contains many, specific, natural degrees of unsolvability which are of interest from the viewpoint of foundations of mathematics.

Let 1 and 0 denote the top and bottom degrees in \mathcal{E}_W . A handy technical lemma is:

Lemma (Simpson 2004). If $s = \deg_W(S)$ where S is Σ_3^0 , then inf(s,1) belongs to \mathcal{E}_W . This applies to measure-theoretic regularity, because for each recursive ordinal α , the mass problem

 $\{Y \mid 0^{(\alpha)} \leq_{\mathsf{LR}} Y\} = \{Y \mid \text{every } \Sigma^{0}_{\alpha+2} \text{ set} \\ \text{includes a } \Sigma^{0,Y}_{2} \text{ set of the same measure} \} \\ \text{is } \Sigma^{0}_{3}.$

Letting

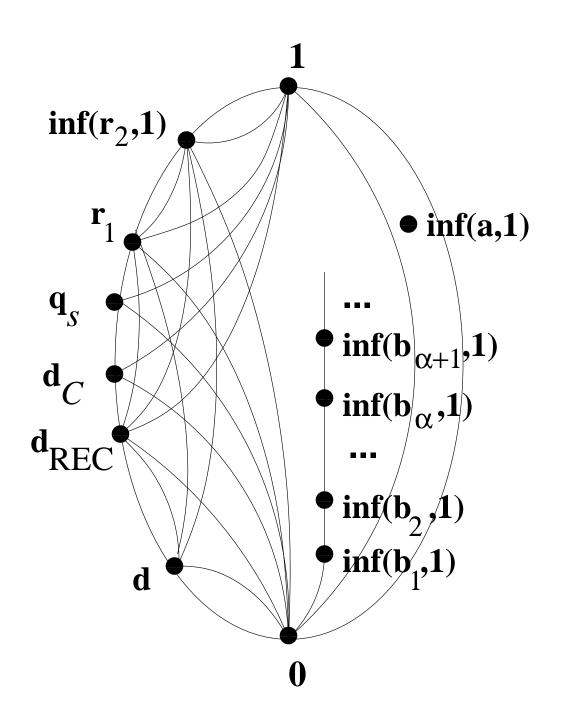
$$\mathbf{b}_{\alpha} = \deg_{\mathsf{W}}(\{Y \mid \mathsf{0}^{(\alpha)} \leq_{\mathsf{LR}} Y\})$$

we have:

Theorem (Simpson 2009). The weak degrees $inf(b_{\alpha}, 1)$ belong to \mathcal{E}_{W} . Moreover, for $\alpha > 0$ these degrees are distinct from one another and incomparable with previously known degrees in \mathcal{E}_{W} including

 $\mathbf{r}_1 = \deg_w(\{Z \mid Z \text{ is Martin-Löf random}\})$ and

 $d = \deg_{W}(\{f \mid f \text{ is diagonally nonrecursive}\}).$



A picture of $\mathcal{E}_{\mathsf{W}}.$ Here $\mathbf{a}=$ any r.e. degree,

- $\mathbf{b} =$ measure-theoretic regularity,
- $\mathbf{r}=$ randomness, $\mathbf{q}=$ Hausdorff dimension,
- d = diagonal nonrecursiveness.

Applications to reverse mathematics:

Applications to reverse mathematics follow, because many specific degrees in \mathcal{D}_W and \mathcal{E}_W are correlated to specific subsystems of second-order arithmetic. In particular ACA_0 \approx 0', WKL_0 \approx 1, WWKL_0 \approx r_1 .

Recall that ACA_0 and WKL_0 are members of the "Big Five." $WWKL_0$ is a weaker system which has been highly relevant for the reverse mathematics of measure theory.

Definition. Let M be an ω -model of RCA₀. Let S be a set in Euclidean space.

1. *S* is *M*-Borel if *S* is $\Sigma_{\alpha}^{0,X}$ for some $X \in M$ and $\alpha < \omega_1^X$.

2. *S* is M-F_{σ} if *S* is $\Sigma_2^{0,Y}$ for some $Y \in M$.

3. *M* is an MTR-*model* if every *M*-Borel set includes an *M*-F_{σ} set of the same measure.

Note: MTR = "measure-theoretic regularity."

Lemma. *M* is an MTR-model if and only if $(\forall X \in M) (\forall \alpha < \omega_1^X) (\exists Y \in M) (X^{(\alpha)} \leq_{\mathsf{LR}} Y).$

Cor. If $M \models ATR_0$ then M is an MTR-model.

Using our new results on LR-reducibility, we can build interesting MTR-models.

Theorem (Simpson 2009). We can find MTR-models M_1 , M_2 , M_3 , M_4 satisfying RCA₀ + \neg WWKL₀ and WWKL₀ + \neg WKL₀ and WKL₀ + \neg ACA₀ and ACA₀ + \neg ATR₀ respectively.

Moreover, these models can be made to satisfy measure-theoretic regularity at all levels of the Borel hierarchy corresponding to countable well-orderings with a small amount of transfinite induction.

Tentative conclusion:

The reverse mathematics of measure-theoretic regularity appears to be somewhat orthogonal to the Gödel hierarchy including the "Big Five" subsystems of second-order arithmetic.

References.

Stephen G. Simpson, *Subsystems of Second Order Arithmetic*, Perspectives in Mathematical Logic, Springer-Verlag, 1999, XIV + 445 pages. Second Edition, Perspectives in Logic, Association for Symbolic Logic, 2009, XVI + 444 pages.

Stephen G. Simpson, The Gödel hierarchy and reverse mathematics, 21 pages, preprint, 21 March 2008. To appear in *Kurt Gödel: Essays for his Centennial*, edited by S. Feferman, C. Parsons, and S. G. Simpson, Association for Symbolic Logic, 2009.

Stephen G. Simpson, Mass problems and measure-theoretic regularity, *Bulletin of Symbolic Logic*, 15, 2009, 385–409.

Stephen G. Simpson, *Degrees of Unsolvability*, in preparation.

THE END