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Randomness.

We work with {0, 1} = the Cantor space.
Note that each point X € {0,1} is

an infinite sequence of 0O's and 1's.

Let u be the fair coin probability measure on
{0, 1N, Thus each point X is viewed by u as
the outcome of an infinite sequence of coin
tosses. Consider sets S C {0, 1} which are
effectively null, i.e., effectively of measure O.
A point X € {0,1 is defined to be random
(in the sense of Martin-Lof 1966)

if it belongs to no effectively null set.

Details: For each 7 € {0,1}* we write

[7] = {X | 7 is an initial segment of X}.

So u([r]) = 2-I7l where |r| = the length of .
For A C {0,1}* we write [A] = U;cal7]-

A set S C {0,1}N is said to be effectively null
if S CN,lAn] where u([An]) < 27™ and the
A,’s are uniformly recursively enumerable or
u.r.e.. Here u.r.e. means that

the set {(r,n) | 7€ A} C{0,1}* x N

IS recursively enumerable.




Prefix-free Kolmogorov complexity.

We consider partial recursive functions &
from {0,1}* to {0,1}*. We say that & is
prefix-free if the domain of ® is prefix-free,
i.e., there is no pair 1,0 € dom(®) such
that o1 is an initial segment of o5. For each
7€ {0,1}* let KPg(7) = min{|o| | ®(c) = 7}.

We can construct a & which is universal, i.e.,
for any prefix-free partial recursive function W
there exists a constant ¢ such that for all r,
KPCD(T) < KP\U(T) + c. Then,

the prefix-free complexity of 7 is defined as
KP(1) = KP4 (7) where & is a universal
prefix-free partial recursive function.

Note that KP is well-defined up to +0O(1).
Here “well-defined” means that KP
IS independent of the choice of &.

Roughly speaking, KP(7) is the number of
bits of information which are needed to
describe 7. In particular, one can prove that
JeVT (KP(7) < |r| + 2logs 7| + ¢), etc.



Randomness and complexity.

The next theorem shows a connection
between Martin-LOf randomness and
Kolmogorov complexity. Namely, X is random
if and only if the finite initial segments of X
are (nearly) as complex as possible.

Let X [n be the initial segment of length n.

Schnorr’s Theorem. A point X € {0,1}}
is random in the sense of Martin-LoOf <—
JeVn (KP(Xn) > n — c).

Two recent books on randomness and
Kolmogorov complexity:

1. André Nies, Computability and
Randomness, Oxford University Press, 2009,
XV + 433 pages.

2. Rodney G. Downey and Denis Hirschfeldt,
Algorithmic Randomness and Complexity.
Springer-Verlag, 2010, XXVIII 4+ 855 pages.
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Partial randomness.

Fix a recursive function f: {0,1}* — [—oo, 00].
The f-weight of A C {0,1}* is defined as
wtp(A) = ,eq27 7.

A point X € {0,1 is said to be f-random
if X ¢ N,[An] for all u.r.e. sequences of sets
Ap, n=1,2,..., such that wtf(An) <2771,

Two special cases:

1. X is Martin-LOof random <—
X is “length-random,” i.e., f-random
where f(7) = |r| = the length of 7.

2. For each rational number s, say that X is
s-random if X is fs-random with fs(7) = s|7]|.

T he effective Hausdorff dimension of X is
effdim(X) = sup{s | X is s-random}.

Fundamental results concerning s-randommness
and effective Hausdorff dimension have been
obtained by several researchers including
Tadaki, Reimann, Terwijn, Miller, .. ..



Partial randomness and complexity.

We now generalize Schnorr’'s Theorem,
replacing Martin-LOf randomness by
partial randomness.

Theorem. For any recursive function
f:{0,1}* = [—o0, 0], a point X € {0,1 is
f-random <= JeVn (KP(X[n) > f(XIn) —c).

For example, X is 0.5-random if and only if
the first n bits of X contain at least n/2 bits
of information, modulo an additive constant.

Similarly, X is /|- |-random if and only if
the first n bits of X contain at least \/n bits
of information, modulo an additive constant.



Randomness relative to a Turing oracle.

The purpose of this talk is to present some
new results concerning partial randomness
relative to a Turing oracle. We first present
the original results, concerning randomness
relative to a Turing oracle.

Recall that a point Y € {0,1} may be used
as a Turing oracle. This means that our
Turing machines have the added capability of
immediately accessing the value Y (n) when n
is known. For example, the function ¥(m) =
the least n such that n > m and Y(n) =1

IS computable using Y as a Turing oracle.

We say that X is Turing reducible to Y
if X is computable using Y as a Turing oracle.

We say that X is random relative to Y
if X € N,[An] whenever u([Ay]) <277
and A, is u.r.e. using Y as a Turing oracle.
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Propagation of randomness.

Theorem 1 (Miller/Yu 2008). Assume that
X Is random, and X is Turing reducible to Y,
and Y is random relative to Z. Then X is
random relative to Z.

We define a PA-oracle to be a Turing oracle
Z such that some complete extension of
Peano Arithmetic is Turing reducible to Z.

Instead of PA we could use any recursively
axiomatizable, essentially undecidable theory.
E.g., ZFC or Z> or PRA or Robinson’s Q.

Theorem 2. Assume that X is random.
Then X is random relative to some PA-oracle.

Theorem 2 is due independently to
Downey/Hirschfeldt/Miller/Nies (2005)

and Reimann/Slaman (not yet published)
and Simpson/Yokoyama (published in 2011).
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Randomness relative to a PA-oracle.

Theorem 2, concerning randomness relative
to a PA-oracle, has been very useful in the
study of randomness.

Reimann/Slaman applied Theorem 2
to prove:

X € {0,1}N is nonrecursive <
X is non-atomically random w.r.t.
some probability measure on {0, 11},

Simpson/Yokoyama applied
a generalization of Theorem 2 to study
the reverse mathematics of Loeb measures.

Recently Brattka/Miller/Nies
applied Theorem 2 to prove:

x € [0,1] is random <—
every computable continuous function

of bounded variation is differentiable at =z.
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Propagation of partial randomness.

In order to obtain sharp generalizations
of Theorems 1 and 2, we must consider
an alternative notion of f-randomness.

As before, fix a recursive function

f:4{0,1}* — [~o0,0]. For A C {0,1}*

the prefix-free f-weight of A is defined as
pwt((A) = sup{wt((P) | P prefix-free, P C A}.
We say that X is strongly f-random

if X ¢N,[An] for all u.r.e. sequences A,

with pwtf(An) <27,

The notion of strong f-randomness relative
to a Turing oracle is defined similarly.

Theorem 3. Assume that X is strongly
f-random, and X is Turing reducible to Y,
and Y is random relative to Z. Then X is
strongly f-random relative to Z.

Theorem 4. Assume Vi (X; is strongly
f;-random). Then Vi (X; is strongly f;-random
relative to Z) for some PA-oracle Z.
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f-randomness vs. strong f-randomness.

Theorem 5. Theorems 3 and 4 fail

if we replace strong f-randomness by
f-randomness. Indeed, there exists a
0.5-random X which is not 0.5-random
relative to any PA-oracle.

Thus strong f-randomness appears to be
more ‘'stable” than f-randomness.
Nevertheless, there are close relationships
between the two notions.

Theorem 6. Assume that X is
f-random relative to some PA-oracle.
Then X is strongly f-random.

T heorem 7. Assume that X is

g-random where g(7) = f(7) 4+ 210g> f(7).
Then X is strongly f-random.

Theorems 3, 4, 5, 6, 7 were first proved in
2011. They are in a June 2012 paper by
Higuchi/Hudelson/Simpson/Yokoyama.
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A variant of prefix-free complexity.

Just as f-randomness can be characterized in
terms of prefix-free complexity or KP, so
strong f-randomness can be characterized in
terms of a slightly different complexity
notion, called a priori complexity or KA.

A semimeasure is a function

m : {0,1}* — [0, 1] such that

m(7) > m(70) +m(s1) for all 7 € {0,1}*.
We say that m is left r.e. if the real numbers
m(7) are uniformly left recursively
enumerable. One can construct a left r.e.
semimeasure m which is universal, i.e., for
any left r.e. semimeasure my1 we can find cq
such that mq(7) <e¢1-m(7) for all 7. Then,
the a priori complexity of 7 is defined as
KA(7) = —logom(7). As in the case of KP,
the definition of KA is independent of the
choice of a universal left r.e. semimeasure,
modulo additive constants

These concepts are originally due to Levin.
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Characterizing strong f-randomness.

Using KA (a priori complexity)

instead of KP (prefix-free complexity),
one obtains a Schnorr-like characterization
of strong f-randomness.

Theorem. For any recursive function
f:{0,1}* = [—o0, 0], @ point X € {0, 1N
is strongly f-random if and only if

JeVn (KA(X n) > f(X]n) — c).

This theorem is essentially due to
Calude/Staiger/Terwijn (2006).
See also Reimann (2008).

Levin often says:
KA is “better behaved’ than KP.

For instance, it is easy to show that
deVT (KA(T) < |7| + ¢).
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Partial randomness and mass problems.

Given a recursive function

f:4{0,1}* — [—o00, <], there is an associated
mass problem Kf, namely, the problem of
finding some X which is f-random. Let

ks = deg(Ky) = the degree of unsolvability
(Muchnik degree) of K.

The next theorem shows that k; < kg
provided f is sufficiently “nice” and

g grows significantly faster than f.

Theorem (Hudelson 2009). Assume that
f(r) = F(|7]) and F(n) < F(n+1) < F(n) + 1
for all n and all 7. Assume also that
f(r)+2logs f(7) < g(7r) for all 7. Then,
there exists a strongly f-random X such that
no g-random Y is Turing reducible to X.

Phil Hudelson, Mass problems and initial segment
complexity, 20 pages, 2010, submitted for publication.

Joseph S. Miller, Extracting information is hard,
Advances in Mathematics, 226, 2011, 373—384.
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The lattice &y.

Let £w be the lattice of Muchnik degrees of
nonempty effectively closed sets in {0, 1},
See for instance my survey paper in

the recent centennial issue of

the Tohoku Mathematical Journal.

The lattice &w is a rich structure and contains
many interesting degrees of unsolvability.

On the next slide, each of the black dots
except one represents a specific, natural
degree of unsolvability.

In particular, for each recursive function
f:4{0,1}* — [—o0, 0] such that f(r) < |r| for
all =, we can show that the Muchnik degree
kf belongs to £w. Thus Hudelson's theorem
implies the existence of more such black dots.

For example, let g, = k¢ where f(7) = W =
the nth root of |r|. Then forn=1,2,3,...
the Muchnik degrees q, belong to &w,
and by Hudelson’'s theorem we have
'y =9q1>q2 > ->dn > qpt1 > "
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1=deg, (CPA)

Inf(r
"1 einf(a,1)
kS
Ky o+ 1)
ke =0
d

A picture of &w. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, k =

complexity, d = diagonal nonrecursiveness.
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Embedding hyperarithmeticity into &w.

Given a Turing oracle Z, let
MLR? = {X | X is random relative to Z} and

KP4 (1) = the prefix-free complexity of 7
relative to ~Z.

Define Y <|r Z <= MLR? C MLRY and

Y <|k Z <= JeVr (KP4 (1) < KPY (1) + ¢).
Theorem (Miller/Kjos-Hanssen/Solomon).
We have Y {|rZ4 <= Y < k Z.

For each recursive ordinal number «, let

0(®) = the ath iterated Turing jump of O.
Thus 0(1) = the halting problem, and

o(at1) — the halting problem relative to 0(®)
etc. This is the hyperarithmetical hierarchy.
We embed it naturally into &w as follows.

Theorem (Simpson, 2009). o) <|rZ
<~ every Zg—|—2 set includes a Zg’Z set

of the same measure. Moreover,
letting ba = deg({Z | 0(® <| g Z}) we have
inf(ba,1) € Ew and inf(bq, 1) < inf(by,41,1).
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1=deg, (CPA)

Inf(r
"1 einf(a,1)
kS
Ky o+ 1)
ke =0
d

A picture of &w. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, k =

complexity, d = diagonal nonrecursiveness.
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History: Kolmogorov 1932 developed his
“calculus of problems’” as a nonrigorous
yet compelling explanation of Brouwer’s
intuitionism. Later Medvedev 1955 and
Muchnik 1963 proposed Medvedev degrees
and Muchnik degrees as rigorous versions
of Kolmogorov's idea.

Some references:

Stephen G. Simpson, Mass problems and randomness,
Bulletin of Symbolic Logic, 11, 2005, 1-27.

Stephen G. Simpson, An extension of the recursively
enumerable Turing degrees, Journal of the London
Mathematical Society, 75, 2007, 287—297.

Stephen G. Simpson, Mass problems and intuitionism,
Notre Dame Journal of Formal Logic, 49, 2008,
127—-136.

Stephen G. Simpson, Mass problems and
measure-theoretic regularity, Bulletin of Symbolic
Logic, 15, 2009, 385—4009.

Stephen G. Simpson, Medvedev degrees of
2-dimensional subshifts of finite type, to appear in
Ergodic Theory and Dynamical Systems.

Stephen G. Simpson, Entropy equals dimension equals
complexity, 2011, 19 pages, submitted for publication.

THE END. THANK YOU!
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