Aspects of the Muchnik lattice

Stephen G. Simpson

Pennsylvania State University

http://www.math.psu.edu/simpson/
simpson@math.psu.edu

Annual Meeting
Association for Symbolic Logic
University of Illinois at Urbana-Champaign
March 25–28, 2015

Turing degrees and Muchnik degrees.

A decision problem is a real $X \in \mathbb{N}^{\mathbb{N}}$. Intuitively, X represents the problem of "finding" or "computing" X. For $X,Y \in \mathbb{N}^{\mathbb{N}}$ we say that X is Turing reducible to Y, abbreviated $X \leq_{\mathsf{T}} Y$, if X is computable using Y as a Turing oracle. A Turing degree is an equivalence class of decision problems under mutual Turing reducibility. The Turing degree of X is denoted $\deg_{\mathsf{T}}(X)$. The partial ordering of all Turing degrees is denoted \mathcal{D}_{T} . \mathcal{D}_{T} is not a lattice, but it is an upper semilattice.

A mass problem is a subset of $\mathbb{N}^{\mathbb{N}}$. Intuitively, $P \subseteq \mathbb{N}^{\mathbb{N}}$ is identified with the problem of "finding" or "computing" at least one member of P. Any $X \in P$ is a "solution" of this problem.

For $P,Q\subseteq \mathbb{N}^{\mathbb{N}}$ we say that P is Muchnik reducible to Q, abbreviated $P\leq_{\mathsf{W}} Q$, if $\forall Y\,(Y\in Q\Rightarrow \exists X\,(X\in P \text{ and } X\leq_{\mathsf{T}} Y))$. Intuitively, from any "solution" of Q we can compute a "solution" of P.

A Muchnik degree is an equivalence class of mass problems under mutual Muchnik reducibility. The Muchnik degree of P is denoted $\deg_{\mathsf{W}}(P)$. The partial ordering of all Muchnik degrees is denoted \mathcal{D}_{W} .

Turing degrees and Muchnik degrees (continued).

Identifying $X \in \mathbb{N}^{\mathbb{N}}$ with $\{X\} \subseteq \mathbb{N}^{\mathbb{N}}$, we have an embedding $\mathcal{D}_{\mathsf{T}} \hookrightarrow \mathcal{D}_{\mathsf{W}}$ which induces a one-to-one order-reversing correspondence between \mathcal{D}_{W} and upwardly closed subsets of \mathcal{D}_{T} . Thus $\mathcal{D}_{\mathsf{W}} = \widehat{\mathcal{D}_{\mathsf{T}}} =$ the *completion* of \mathcal{D}_{T} . It follows that \mathcal{D}_{W} is a complete and completely distributive lattice.

We may view \mathcal{D}_T as a topological space in which the open sets are the upwardly closed sets. Thus \mathcal{D}_W is a topological model of intuitionistic propositional calculus.

For any topological space \mathcal{T} , a sheaf over \mathcal{T} consists of a topological space \mathcal{X} together with a local homeomorphism $p: \mathcal{X} \to \mathcal{T}$. A sheaf morphism from a sheaf $p: \mathcal{X} \to \mathcal{T}$ to another sheaf $q: \mathcal{Y} \to \mathcal{T}$ is a continuous function $f: \mathcal{X} \to \mathcal{Y}$ such that p(x) = q(f(x)) for all $x \in \mathcal{X}$. Let $\mathsf{Sh}(\mathcal{T}) = \mathsf{the}$ category of sheaves and sheaf morphisms over \mathcal{T} . $\mathsf{Sh}(\mathcal{T})$ is a topos and a model of intuitionistic higher-order logic. In this model, the truth values are the open subsets of \mathcal{T} .

The Muchnik topos and the Muchnik reals.

Applying the above construction to the topological space \mathcal{D}_T , we obtain $\mathsf{Sh}(\mathcal{D}_T)=$ the *Muchnik topos*. In this model of intuitionistic mathematics, the truth values are the Muchnik degrees. We offer $\mathsf{Sh}(\mathcal{D}_T)$ as a rigorous implementation of Kolmogorov's nonrigorous 1932 interpretation of intuitionistic mathematics as a "calculus of problems."

Consider the topological space $\mathbb{R}_C = \mathbb{R} \times \mathcal{D}_T$ with basic open sets $\{x\} \times \mathcal{U}$ where $x \in \mathbb{R}$ and $\mathcal{U} \subseteq \mathcal{D}_T$ is upwardly closed. There is a projection map $p: \mathbb{R}_C \to \mathcal{D}_T$ given by $p(x,\mathbf{a}) = \mathbf{a}$. Thus \mathbb{R}_C is a sheaf over \mathcal{D}_T representing the Cauchy/Dedekind real number system. An interesting subsheaf of \mathbb{R}_C is $\mathbb{R}_M = \{(x,\mathbf{a}) \in \mathbb{R}_C \mid \deg_T(x) \leq \mathbf{a}\}$, the sheaf of *Muchnik reals*, which supports an analog of computable analysis. Intuitively, a Cauchy/Dedekind real can exist anywhere within the Turing degrees, but a Muchnik real can exist only where we have enough Turing oracle power to compute it. We have proved that the Muchnik topos satisfies a *Choice and Bounding Principle*

$$(\forall x \exists y \Phi(x,y)) \Rightarrow (\exists w \exists z \forall x (wx \leq (x,z) \text{ and } \Phi(x,wx)))$$

where x,y,z range over Muchnik reals, w ranges over functions from Muchnik reals to Muchnik reals, and w and z do not occur in Φ .

The sublattices \mathcal{E}_W and \mathcal{S}_W .

Since \mathcal{D}_W is large and complicated, it is natural to consider sublattices which are more manageable. Two such sublattices are

$$\mathcal{E}_{\mathsf{W}} = \{ \deg_{\mathsf{W}}(P) \mid \emptyset \neq P \subseteq \{0,1\}^{\mathbb{N}} \text{ and } P \text{ is } \Pi_1^0 \}$$

and

$$S_{\mathsf{W}} = \{ \deg_{\mathsf{W}}(P) \mid \emptyset \neq P \subseteq \mathbb{N}^{\mathbb{N}} \text{ and } P \text{ is } \Pi_1^0 \}.$$

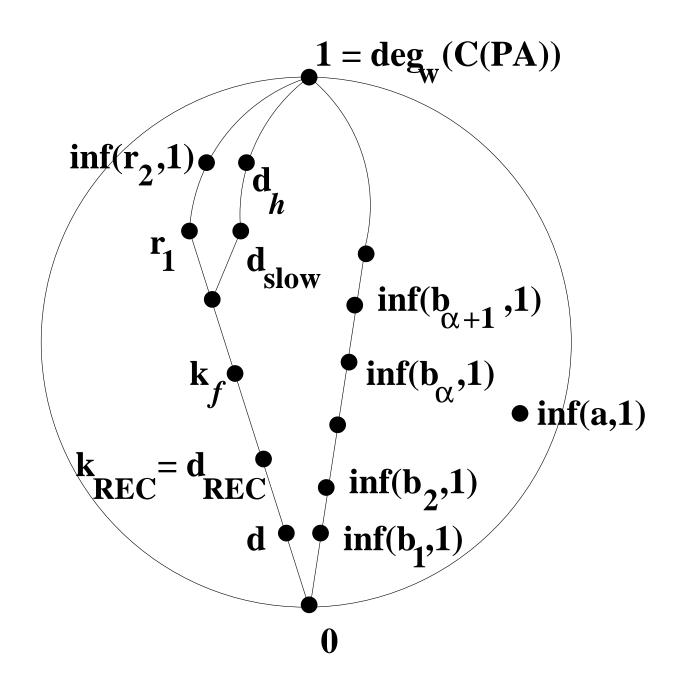
We compare \mathcal{E}_W to \mathcal{E}_T = the upper semilattice of r.e. Turing degrees.

There is a strong analogy between \mathcal{E}_W and \mathcal{E}_T :

- (a) \mathcal{E}_W is the smallest natural sublattice of \mathcal{D}_W , just as \mathcal{E}_T is the smallest natural subsemilattice of \mathcal{D}_T .
- (b) There is a natural embedding $a\mapsto \inf(a,1):\mathcal{E}_\mathsf{T}\hookrightarrow \mathcal{E}_\mathsf{W}.$
- (c) The Splitting Theorem and the Density Theorem, due to Sacks for \mathcal{E}_T , also hold for \mathcal{E}_W . See below.

However, \mathcal{E}_W has an advantage over \mathcal{E}_T :

 \mathcal{E}_{W} contains many specific, natural degrees associated with specific, natural, foundationally interesting problems. In contrast, \mathcal{E}_{T} is not known to contain any such degrees other than $\mathbf{0}'$ and $\mathbf{0}$.



This is a picture of \mathcal{E}_W . Each black dot except $\inf(\mathbf{a},\mathbf{1})$ represents a specific, natural, Muchnik degree in \mathcal{E}_W .

The Splitting and Density Theorems for \mathcal{E}_W .

Splitting Theorem (Binns 2003). \mathcal{E}_W satisfies the Splitting Theorem: $\forall x \, (x > 0 \Rightarrow \exists u \, \exists v \, (u < x \, \text{and} \, v < x \, \text{and} \, x = \sup(u, v))$.

Density Theorem (Binns/Shore/Simpson 2014). \mathcal{E}_W satisfies the Density Theorem: $\forall x \, \forall y \, (x < y \Rightarrow \exists z \, (x < z < y))$.

We do not know whether \mathcal{E}_W satisfies dense splitting.

We now sketch the proof that \mathcal{E}_W is dense. Since \mathcal{E}_W is an initial segment of \mathcal{S}_W (Simpson 2007), it suffices to prove that \mathcal{S}_W is dense. The proof is presented in a modular way, with several lemmas.

Lemma 1. Let $Q \subseteq \mathbb{N}^{\mathbb{N}}$ be Π_1^0 such that $Q \nleq_{\mathsf{W}} \{0\}$. Then for all $Y \in \mathbb{N}^{\mathbb{N}}$ there exists $\widehat{Y} \in \mathbb{N}^{\mathbb{N}}$ such that $0' \oplus Y \equiv_{\mathsf{T}} 0' \oplus \widehat{Y} \equiv_{\mathsf{T}} \widehat{Y}'$ and $Q \nleq_{\mathsf{W}} \{\widehat{Y}\}$.

Lemma 1 is proved like the Friedberg Jump Theorem, with extra steps taken to insure that $Q \nleq_{\mathsf{W}} \{\widehat{Y}\}.$

Lemma 2. Given Π_1^0 predicates $U, V \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$, we can find a Π_1^0 predicate $\widehat{U} \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ such that for each X with $\{Z \mid V(X,Z)\} \nleq_{\mathsf{W}} \{X\}$ there is a homeomorphism $Y \mapsto \widehat{Y}$ of $\{Y \mid U(X,Y)\}$ onto $\{\widehat{Y} \mid \widehat{U}(X,\widehat{Y})\}$ such that $X' \oplus Y \equiv_{\mathsf{T}} X' \oplus \widehat{Y} \equiv_{\mathsf{T}} (X \oplus \widehat{Y})'$ and $\{Z \mid V(X,Z)\} \nleq_{\mathsf{W}} \{X \oplus \widehat{Y}\}$.

Lemma 2 is proved by uniformly relativizing Lemma 1 to X, taking extra care to insure that $\{\hat{Y} \mid \hat{U}(X,\hat{Y})\}$ is uniformly Π_1^0 relative to X.

Lemma 3. Suppose Kleene's O is not hyperarithmetical in X. Then, there is a nonempty Π_1^0 set $S \subseteq \mathbb{N}^\mathbb{N}$ such that $S \nleq_{\mathsf{W}} \{X'\}$.

Lemma 3 follows from the Kleene Normal Form Theorem plus the fact that Kleene's O is Π_1^1 .

We now prove that S_W is dense. Given Π_1^0 sets $P,Q\subseteq\mathbb{N}^\mathbb{N}$ such that $P<_WQ$, to find a Π_1^0 set $R\subseteq\mathbb{N}^\mathbb{N}$ such that $P<_WR<_WQ$. By the Gandy Basis Theorem, let $X_0\in P$ be such that Kleene's O is not hyp. in X_0 . By Lemma 3 let $S\subseteq\mathbb{N}^\mathbb{N}$ be nonempty Π_1^0 such that $S\nleq_W\{X_0'\}$. Apply Lemma 2 with $U(X,Y)\equiv Y\in S$ and $V(X,Z)\equiv Z\in Q$. Let $R=\{X\oplus \hat{Y}\mid X\in P \text{ and } \hat{U}(X,\hat{Y})\}\cup Q$ where \hat{U} is as in the conclusion of Lemma 2. It is easy to check that this works.

References.

Sankha S. Basu and Stephen G. Simpson, Mass problems and higher-order intuitionistic logic, 44 pages, 2014, arXiv 1408.2763, to appear in *Computability*.

Stephen Binns, Richard A. Shore, Stephen G. Simpson, Mass problems and density, 5 pages, 2014, in preparation.

Stephen Binns, A splitting theorem for the Medvedev and Muchnik degrees, *Mathematical Logic Quarterly*, 49, 2003, 327–335.

Stephen G. Simpson, An extension of the recursively enumerable Turing degrees, *Journal of the London Mathematical Society*, 75, 2007, 287–297.

Stephen G. Simpson, Mass problems associated with effectively closed sets, *Tohoku Mathematical Journal*, 63, 2011, 489–517.

Thank you for your attention!