Aspects of the Muchnik lattice

Stephen G. Simpson
Department of Mathematics
Pennsylvania State University
http://www.math.psu.edu/simpson/
simpson@math.psu.edu

December 9, 2014

This is my abstract for a special session at the Annual Meeting of the Association for Symbolic Logic, to be held March 25–28, 2015 at the University of Illinois at Urbana-Champaign.

Let P and Q be sets of reals. Intuitively we may view a set of reals as a "problem," namely, the problem of "finding" some real in the set. Accordingly, we say that P is Muchnik reducible to Q if for all $y \in Q$ there exists $x \in P$ such that x is Turing reducible to y. The Muchnik degree of P is the equivalence class of P under mutual Muchnik reducibility. Let \mathcal{D}_{w} be the lattice of all Muchnik degrees, and let \mathcal{E}_{w} be the sublattice consisting of the Muchnik degrees of nonempty, effectively closed (i.e., Π_1^0) sets of reals. It is well known that \mathcal{D}_w is the natural completion of the upper semilattice \mathcal{D}_T of Turing degrees. Similarly, \mathcal{E}_{w} is a natural extension of the upper semilattice \mathcal{E}_{T} of recursively enumerable Turing degrees. In a recent paper by Sankha S. Basu and the speaker, we show that the category of sheaves of sets over \mathcal{D}_{w} is an interesting model of intuitionistic higher-order logic. We call this model the Muchnik topos. In recent work by Stephen E. Binns and Richard A. Shore and the speaker, we show that \mathcal{E}_w is dense, i.e., for all $\mathbf{p}, \mathbf{q} \in \mathcal{E}_w$ such that $\mathbf{p} < \mathbf{q}$ there exists $\mathbf{r} \in \mathcal{E}_w$ such that $\mathbf{p} < \mathbf{r} < \mathbf{q}$. We now sketch the proof of this latter result. The proof involves some hyperarithmetical theory.