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Introduction.

Algorithmically unsolvable problems
occur frequently in mathematics and logic.
Celebrated examples are:

• the halting problem for Turing machines,

• the word problem for groups,

• Hilbert’s 10th problem for Diophantine
equations,

• the Entscheidungsproblem for the
predicate calculus,

• the problem of finding a completion
of Peano arithmetic.

An important topic in mathematical logic
dating back to the 1940s and 1950s is

degrees of unsolvability,

also known as degree theory. The purpose
of degree theory is to classify algorithmically
unsolvable problems according to the amount
of unsolvability which is inherent in them.
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Introduction (continued).

In the 1960s and 1970s, degree theory
flourished. Remarkable contributions were
made by Sacks, Lachlan, and many others.

In the 1980s and 1990s, degree theory fell
into disrepute. In my opinion, this decline
was due to an excessive concentration on
methodological aspects, to the exclusion of
foundationally significant aspects.

The purpose of this talk is to rehabilitate
degree theory by means of a subtle but
powerful shift in emphasis. The key concepts
here are mass problems and weak reducibility
a la Medvedev 1955 and Muchnik 1963.

Although known in Russia, mass problems
were largely ignored in the West until
recently. In this talk I hope to show
that mass problems are an important link
reconnecting degree theory to its roots
in the foundations of mathematics.
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Overview.

In this talk we survey some recent results
on mass problems and their weak degrees.

Topics:

• mass problems

• weak reducibility

• weak degrees, a.k.a. Muchnik degrees

• connections with intuitionism

• Dw = the lattice of all weak degrees

• Pw = a countable sublattice of Dw

Note: Pw consists of the weak degrees of
nonempty, effectively closed sets of reals.

• some specific, natural degrees in Pw

• randomness in Pw

• hyperarithmeticity in Pw

• Kolmogorov complexity in Pw

• almost everywhere domination in Pw

• an application of Pw to symbolic dynamics
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Basic concepts.

By a real we mean a Turing oracle.

This could be either a real number, x ∈ R,

or a point in the Baire space, f ∈ NN,

or a point in the Cantor space, X ∈ {0,1}N.

Definitions (Medvedev 1955, Muchnik 1963).

• A mass problem is a set of reals.
In other words, P ⊆ R.

• The solutions of a mass problem P are
the elements of P . In other words, x ∈ P .

• We say that P is solvable if there exists
a solution x ∈ P which is Turing computable.
Otherwise P is said to be unsolvable.

• Let P and Q be mass problems.
We say that P is weakly reducible to Q,
abbreviated P ≤w Q, if
for all y ∈ Q there exists x ∈ P such that
x is computable using y as a Turing oracle.
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Examples of unsolvable mass problems.

• Let CPA be the problem of

finding a complete, consistent theory

which extends Peano Arithmetic.

We identify CPA with a certain set of reals.

Namely, CPA =

{X | X is a completion of Peano Arithmetic}
= {X | X is the characteristic function of

the set of Gödel numbers of theorems of T ,

where T is a complete, consistent extension

of Peano Arithmetic}.
By Lindenbaum’s Lemma, the set CPA is

nonempty, i.e., there exist solutions of CPA.

On the other hand, by Gödel/Rosser/Tarski,

CPA is an “unsolvable” problem, in the sense

that there is no computable solution of CPA.

We may describe this situation by saying that

the degree of unsolvability of CPA

is greater than zero but less than infinity.
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Examples (continued).

• Let R1 be the problem of finding an
infinite sequence of bits which is 1-random
a la Martin-Löf 1966 and Kučera 1985.
We identify R1 with the set of 1-random
points in the Cantor space.

It is known that R1 is unsolvable, in the
sense that no 1-random sequence of bits
is Turing computable.

We can compare the degrees of unsolvability

of these two unsolvable mass problems,
CPA and R1.

Namely, it can be shown that
R1 is weakly reducible to CPA, but
CPA is not weakly reducible to R1.

Thus, the degree of unsolvability of R1 is
less than that of CPA but greater than zero.
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Intuitionistic motivation.

Kolmogorov 1932 proposed to view
intuitionism as a “calculus of problems.”
This is the Brouwer/Heyting/Kolmogorov
or BHK interpretation of intuitionism.

Using Turing’s theory of computability,
Medvedev 1955 and Muchnik 1963 gave
rigorous elaborations of Kolmogorov’s
informal proposal.

A “problem” is defined instrumentally
as the set of its possible solutions.
The solutions are identified as reals.
Thus, a mass problem is a set of reals.

A mass problem is defined to be “solvable”
if at least one of its solutions is Turing
computable.

According to Muchnik, a mass problem is
“reducible” to another mass problem if,
given any solution of the second problem,
we can use it as a Turing oracle
to compute a solution of the first problem.
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Definitions (continued).

• Two mass problems are said to be
weakly equivalent if each is weakly reducible
to the other. This is an equivalence relation.

• Let P be a mass problem.
The weak degree of P is the equivalence
class of P under weak equivalence.
The weak degree of P is denoted degw(P).
Weak degrees are a.k.a. Muchnik degrees.

• Dw is the set of all Muchnik degrees,
partially ordered by weak reducibility.
In other words, Dw = {degw(P) | P ⊆ R}.
For a = degw(P) and b = degw(Q)
we write a ≤ b if and only if P ≤w Q.

Examples (continued).

Note that 0 = degw(R) is the Muchnik degree
associated with solvable mass problems.
Letting p = degw(CPA) and r1 = degw(R1),
we have 0 < r1 < p in Dw.
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Structural aspects of Dw.

Theorem (Muchnik 1963).
Dw is a complete distributive lattice.

Proof. For reals x and y say that
x is Turing reducible to y, abbreviated x ≤T y,
if x is computable using y as a Turing oracle.

A set of reals U is said to be
Turing upward closed if
x ∈ U and x ≤T y imply y ∈ U .

Note that Dw is dually isomorphic to the
lattice of sets of reals which are Turing
upward closed. The theorem follows.

Remark. The Turing upward closed sets
are the open sets of the Muchnik topology.
Muchnik explicitly noted that Dw is dually
isomorphic to the lattice of open sets with
respect to this topology.

Remark. Other structural aspects of Dw

have been studied by Sorbi and Terwijn.
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Applications to intuitionism.

As noted by Muchnik, the lattice Dw is
Brouwerian in the sense of Birkhoff 1948.
Thus Dw is a model of intuitionistic
propositional calculus.

Recently we have been investigating
the Muchnik topos, i.e., the category of
sheaves of sets over the Muchnik space.
It turns out that this topos contains some
interesting models of intuitionistic analysis
and set theory. Such models are similar to
but simpler than the relative realizability
models of Kleene/Vesley, J. Moschovakis,
Troelstra, Birkedal, and van Oosten. For
instance, we get a model of the scheme

(∀f ∃g A(f, g)) ⇒ ∃h∀f ∃g (g ≤T f ⊕ h∧A(f, g)).

This is work in progress.

These applications confirm the original
insights of Kolmogorov 1932, Medvedev
1955, and Muchnik 1963.
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The sublattice Pw.

Remark. Dw is of cardinality 22ℵ0. We now
focus on a countable sublattice of Dw which
was introduced by me in 1999.

Definitions.

• A set of reals is effectively closed if it is
the complement of the union of a computable
sequence of basic open sets. Effectively
closed sets are also known as Π0

1 sets.

• Pw is the set of weak degrees of
mass problems associated with
nonempty, effectively closed sets in

the Cantor space, {0,1}N,

partially ordered by weak reducibility.

Remark. Pw is unaffected if we replace
the Cantor space {0,1}N by the real line, R,
or n-dimensional Euclidean space, Rn.
However, Π0

1 sets in the Baire space NN

behave differently, because of the lack of
local compactness.

12



First results on Pw.

• Pw is a countable distributive lattice. It has
a bottom element, 0 = degw(R). Moreover 0
is meet-irreducible. (These results are easy.)

• Pw has a top element, 1 = degw(CPA).
(Scott/Tennenbaum 1960.)

• The degree r1 = degw(R1) belongs to Pw.
Within Pw we have 0 < r1 < 1 and r1 is
meet-irreducible and does not join to 1.
Moreover r1 can be characterized as
the maximum weak degree of
an effectively closed set of positive measure.
(Kučera 1985, Simpson 1999.)

• Every countable distributive lattice is
lattice-embeddable in every nontrivial initial
segment of Pw. (Binns/Simpson 2004.)

• Every element of Pw is join-reducible.
(Binns 2003.)

• We conjecture that for all a < b in Pw

there exists c in Pw such that a < c < b.
This would be analogous to the Sacks
Density Theorem for r.e. Turing degrees.
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Specific degrees in Pw.

In addition to being structurally rich, Pw

contains many specific, natural degrees
which are of interest from a computational
viewpoint. These degrees tend to be linked
to foundationally significant topics such as:

• algorithmic randomness

• effective Hausdorff dimension

• reverse mathematics

• almost everywhere domination

• diagonal nonrecursiveness

• the hyperarithmetical hierarchy

• resource-bounded computational complexity

• Kolmogorov complexity

• subrecursive hierarchies

We shall define and explain some of these
specific, natural degrees in Pw.

First we need a technical lemma.
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The Embedding Lemma.

Many advanced results concerning Pw

are based on the following lemma.

Notation. We use sup and inf to denote
the supremum and infimum operations in Dw.
Thus sup = join = least upper bound,
and inf = meet = greatest lower bound.

Remark. For a = degw(P) and b = degw(Q)
we have sup(a,b) = degw(P ×Q) and
inf(a,b) = degw(P ∪Q).

Definition. Let S be a set of reals.
S is said to be Σ0

3 if

S = {X | ∃i∀m∃n R(X, i, m, n)}
where R ⊆ {reals} × N3 is recursive.

Embedding Lemma (Simpson 2003).

Let s = degw(S) where S is Σ0
3.

Then inf(s, 1) belongs to Pw.
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Applications of the Embedding Lemma.

• Let R2 be the set of reals which are
2-random, i.e., 1-random relative to the
Halting Problem. It can be shown that R2 is
Σ0

3. Therefore, letting r2 = degw(R2) we
have inf(r2, 1) ∈ Pw. Moreover inf(r2, 1) is
meet-irreducible and does not join to 1 and is
the maximum weak degree of a Π0

1 set whose
Turing upward closure is of positive measure.
(Simpson 2003.)

• Let X and Y be reals. We say that
X is dominated by Y if for all f ≤T X there
exists g ≤T Y such that f(n) < g(n) for all n.
A real is almost everywhere dominating if it
dominates all reals except a set of measure 0.
Let AED = {Y | Y is almost everywhere
dominating}. It can be shown that AED is
Σ0

3. Therefore, letting b = degw(AED) we
have inf(b, 1) ∈ Pw.

(Binns, Cholak, Dobrinen, Greenberg,
Kjos-Hanssen, Lerman, Miller, Simpson,
Solomon, 2004–2006.)
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A picture of Pw. Here r1, r2, and b

are the weak degrees associated with
1-randomness, 2-randomness, and
almost everywhere domination.
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Applications (continued).

• The lattice Pw is not Brouwerian. This
is proved using the Embedding Lemma plus
my generalization of the Posner/Robinson
Theorem. (Simpson 2007.)

• Recall that ϕ
(1)
n (n) is a universal partial

recursive function. We say that f ∈ NN is
diagonally nonrecursive if ∀n (f(n) 6= ϕ

(1)
n (n)).

Let d = degw(DNR) where DNR is the set of
functions which are diagonally nonrecursive.
We can use the Embedding Lemma to show
that d belongs to Pw. (Simpson 2003.)

• A function f ∈ NN is recursively bounded
if there exists a recursive function g ∈ NN

such that f(n) < g(n) for all n. Let DNRREC
be the set of functions which are diagonally
nonrecursive and recursively bounded.
Let dREC = degw(DNRREC).
We can use the Embedding Lemma to show
that dREC belongs to Pw. (Simpson 2003.)
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Applications (continued).

• Given a recursively enumerable set A ⊆ N,
map the Turing degree of A to the Muchnik
degree of CPA ∪ {A}. By the Embedding
Lemma, this Muchnik degree belongs to Pw.
Thus we have a natural embedding of all such
Turing degrees into Pw. A result of Arslanov
implies that this embedding is one-to-one and
preserves the top and bottom and upper
semilattice structure of the recursively
enumerable Turing degrees. (Simpson 2003.)

Remark. There is an obvious analogy
between Pw and the upper semilattice of
recursively enumerable Turing degrees.

However, Pw is much better, because
we know many specific examples of natural,
intermediate degrees in Pw. For instance

0 < d < dREC < r1 < inf(r2, 1) < 1 .

No such examples are known in the case of
the recursively enumerable Turing degrees.
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A picture of Pw. Here r = randomness,
b = almost everywhere domination,
d = diagonal nonrecursiveness,
a = any recursively enumerable degree.
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Embedding hyperarithmeticity into Pw.

Recall that a recursive ordinal

is the order type of a recursive well ordering

of a set of integers. For each such ordinal α,

let 0(α) be the αth Turing jump of 0.

This is well defined up to Turing degree.

These Turing degrees are known as

the hyperarithmetical hierarchy.

Recently Cole/Simpson 2006 exhibited a

natural embedding of the hyperarithmetical

hierarchy into Pw. We now outline this result.

Let hα be the Muchnik degree of 0(α).

The Embedding Lemma implies that

inf(hα, 1) belongs to Pw, but this is worthless

because inf(hα, 1) = 1. The Cole/Simpson

embedding is slightly more complicated.
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Embedding hyperarithmeticity (continued).

Definitions (Cole/Simpson 2006).

Let X be a real. A function f(n) is called
boundedly limit recursive in X if there exist
an X-recursive approximating function f̃(n, s)
and a recursive bounding function f̂(n)

such that for all n, f(n) = lims f̃(n, s)

and |{s | f̃(n, s) 6= f̃(n, s + 1)}| < f̂(n).

Let BLR(X) = {f | f is boundedly limit
recursive in X}. If S is a set of reals, let

S∗ = {Y | ∃X (X ∈ S ∧BLR(X) ⊆ BLR(Y ))}.
If s = degw(S) let s∗ = degw(S∗).
This is well defined up to Muchnik degree.

Theorems (Cole/Simpson 2006).

If S is Σ0
3 then S∗ is Σ0

3. For all recursive
ordinals 0 < α < β we have inf(h∗α, 1) ∈ Pw

and 0 < inf(h∗α, 1) < inf(h∗β, 1) < 1 and
they are incomparable with d and inf(r2, 1).
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A picture of Pw. Here a = any r.e. degree,
h = hyperarithmeticity, r = randomness,
b = almost everywhere domination,
d = diagonal nonrecursiveness.
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In the above picture, each of the black dots
except the one labeled inf(a, 1) represents a
specific, natural Muchnik degree in Pw.

We shall now exhibit some more black dots.

Kolmogorov complexity.

Definition. Given X ∈ {0,1}N and n ∈ N,

let X � n = 〈X(0), X(1), . . . , X(n− 1)〉.
Let K(X � n) = the Kolmogorov/Chaitin
complexity of X � n, i.e., the minimum size
(measured in bits) of a program (prefix-free)
which describes X � n.

Remark. It is known that X is 1-random if

and only if ∃c∀n (K(X � n) ≥ n− c).

We consider two refinements.

• The effective Hausdorff dimension of X

is defined as dim(X) = lim infn K(X � n)/n.

For right r.e. real numbers 0 ≤ s < 1 let qs

be the Muchnik degree of {X | dim(X) > s}.
It can be shown that qs ∈ Pw. Moreover
s < t implies qs < qt. (J. Miller 2008.)
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Kolmogorov complexity (continued).

• Let C be a “nice” class of recursive
functions. For example, C could be
the polynomial time computable functions,
or the primitive recursive functions,
or all recursive functions.

Define X ∈ {0,1}N to be C-complex

if (∃f ∈ C) (∀n) (K(X � n) ≥ f−1(n)).

Here f−1(n) = least m such that f(m) ≥ n.

It turns out that the problem of finding
a C-complex real is weakly equivalent to
the problem of finding a function which is
diagonally nonrecursive and C-bounded.

Moreover, letting dC be the Muchnik degree
of this problem, we have dC ∈ Pw. Moreover,
if C ′ is another such class and contains a
function which grows “much faster than”
all functions in C, then dC < dC′.

(Ambos-Spies, Kjos-Hanssen, Lempp, Merkle,
Simpson, Slaman, Stephan, 2004–2006.)
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A picture of Pw. Here a = any r.e. degree,
h = hyperarithmeticity, r = randomness,
b = a. e. domination, q = dimension,
d = diagonal nonrecursiveness.
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Application to symbolic dynamics.

A tiling problem is a finite set of unit squares

with colored edges. The elements of the set

are called tiles. A solution of the problem is

an assignment of tiles to integer points in the

plane so that adjacent edges have matching

colors. Tilings of the plane were studied in

the 1960s and 1970s by logicians including

Wang, R. Berger, R. Robinson, and Myers.

For instance, it is undecidable whether

the solution set of a given tiling problem

is nonempty.

Recently a link with symbolic dynamics has

emerged. Namely, nonempty solution sets of

tiling problems are essentially the same thing

as 2-dimensional subshifts of finite type.

See for instance the recent theorem of

Hochman/Meyerovitch saying that a positive

real number is the entropy of such a subshift

if and only if it is right recursively enumerable.
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Symbolic dynamics (continued).

Using the methods of Robinson and Myers,

we have proved:

Theorem (Simpson 2007).

Pw consists precisely of the Muchnik degrees

of 2-dimensional subshifts of finite type.

This theorem has consequences in symbolic

dynamics. For instance, using this theorem

together with structural properties of Pw,

we obtain an infinite sequence of

2-dimensional subshifts of finite type

which are strongly independent of each other.

Surely there are correlations between

dynamical properties of 2-dimensional

subshifts of finite type and computational

properties of their Muchnik degrees.

This aspect remains largely unexplored.
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