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Abstract:

Let X be a Turing oracle. A function f(n) is said to be
boundedly limit recursive in X if it is the limit of an
X-recursive sequence of X-recursive functions f̃(n, s)
such that the number of times f̃(n, s) changes is
bounded by a recursive function of n. Let us say that
X is BLR-low if every function which is boundedly limit
recursive in X is boundedly limit recursive in 0. This is
a lowness property in the sense of Nies. These notions
were introduced by Joshua A. Cole and the speaker in
a recently submitted paper on mass problems and
hyperarithmeticity. The purpose of this talk is to
compare BLR-lowness to similar properties which have
been considered in the recursion-theoretic literature.
Among the properties discussed are: K-triviality,
superlowness, jump-traceability, weak jump-traceability,
total ω-recursive enumerability, array recursiveness,
array jump-recursiveness, and strong jump-traceability.
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Definition.

If X is a Turing oracle, let BLR(X) be the set
of number-theoretic functions f : ω → ω which
are boundedly limit recursive in X.

This means that there exist
an X-recursive approximating function f̃(n, s)
and a recursive bounding function f̂(n)
such that

f(n) = lims f̃(n, s)

and

|{s | f̃(n, s) 6= f̃(n, s + 1)}| < f̂(n)

for all n.

In particular, BLR(0) = {f | f ≤wtt 0′}.

The BLR operator was introduced in

Mass problems and hyperarithmeticity, by
Joshua A. Cole and Stephen G. Simpson,
20 pages, submitted 2006 to JML.
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Cole and Simpson used the BLR operator
to construct a natural embedding of the
hyperarithmetical hierarchy into Pw.

Namely, we proved that the Muchnik degrees

inf(h∗α, 1) for α < ωCK
1 are distinct ∈ Pw.

Explanations:

1. For each α < ωCK
1 , hα is the Muchnik

degree of {0(α)} (i.e., the hyp. hierarchy).

2. If s = the Muchnik degree of S, then
s∗ = the Muchnik degree of S∗ where

S∗ = {Y | ∃X (X ∈ S ∧BLR(X) ⊆ BLR(Y ))}.

Key Lemma: If S is Σ0
3 then S∗ is Σ0

3.

3. Pw = the lattice of Muchnik degrees
of mass problems associated with
nonempty Π0

1 subsets of 2ω.

The top and bottom degrees in Pw
are denoted 1 and 0, respectively.
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1 = 0’ = PA

The Muchnik degrees inf(h∗α, 1), 1 ≤ α < ωCK
1 ,

are incomparable with d, dREC, r1, inf(r2, 1),

and all r.e. Turing degrees except 0 and 0′.
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After Cole/Simpson, it was natural to study
the star operator for its own sake. We have
s∗∗ = s∗ ≤ s, inf(s, t)∗ = inf(s∗, t∗), P∗w ⊆ Pw.

Question. For which s is s∗ = 0?

Say that X is BLR-low if BLR(X) ⊆ BLR(0).
This is a lowness property a la Nies.

For s = the Muchnik degree of S, we have
s∗ = 0 if and only if (∃X ∈ S) (X is BLR-low).

Theorem (Cole/Simpson). X is BLR-low
iff X is superlow and jump-traceable.

Recall that superlow means X ′ ≤tt 0′, and
jump-traceable means (∃ rec fcns p, q) (∀n)
((ϕX

n (n) ↓⇒ ϕX
n (n) ∈ Wp(n)) ∧ |Wp(n)| < q(n)).

Nies (Advances, LC 2002) proved that
neither property implies the other, though
they are equivalent in the r.e. case.
Moreover, every low-for-random has both
properties. Thus, by Cole/Simpson,
low-for-random implies BLR-low.
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A weaker property than jump-traceability is
r.e.-traceability : (∃ rec fcn q) (∀f ≤T X)
(∃ rec fcn p) ∀n (f(n) ∈ Wp(n)∧ |Wp(n)| < q(n)).

The following theorem is due to
Kjos-Hanssen/Merkle/Stephan, STACS 2006.

Theorem. If X is r.e.-traceable,
then X is DNR-free, i.e., there is no
diagonally nonrecursive function ≤T X.

(The proof is short but ingenious.)

Thus, letting d = the Muchnik degree of the
mass problem associated with diagonal
nonrecursiveness, we have d∗ > 0.

It follows that s∗ > 0 for all s ≥ d.

On the other hand,
by the results of Nies and Cole/Simpson,
we can find s, t ∈ Pw such that
sup(s, t) = 1, hence sup(s, t)∗ = 1∗ > 0,
yet s∗ = t∗ = 0.
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One thing leads to another.

A weaker property than r.e.-traceability is

weak r.e.-traceability:

(∀f ≤T X) (∃ recursive functions p, q)

(∀n) (f(n) ∈ Wp(n) ∧ |Wp(n)| < q(n)).

Obviously, if X is hyperimmune-free, then

X is weakly r.e.-traceable. Moreover,

by the Hyperimmune-Free Basis Theorem,

there exists a hyperimmune-free X which is

of PA degree, hence not DNR-free.

Thus, the Kjos-Hanssen/Merkle/Stephan

result does not hold with “r.e.-traceable”

replaced by “weakly r.e.-traceable”.

However, we have:

Theorem (Kjos-Hanssen, unpublished).

If X is weakly r.e.-traceable and of

hyperimmune degree, then X is DNR-free.
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Theorem (Kjos-Hanssen, unpublished).

If X is weakly r.e.-traceable and of
hyperimmune degree, then X is DNR-free.

Proof.

Suppose X is not DNR-free.

By an argument of Jockusch 1989, for all
g ≤T X we can find h ≤T X such that
h(n) 6' ϕi(i) for all i < g(n).

Since X is of hyperimmune degree,
let g ≤T X be recursively unbounded.

Since X is weakly r.e.-traceable, let p and q
be recursive functions such that h(n) ∈ Wp(n)
and |Wp(n)| < q(n) for all n.

Let s(j, n) be a recursive function such that
ϕs(j,n)(s(j, n)) ' the jth member of Wp(n)
in order of recursive enumeration.

Since g is recursively unbounded, let n be
such that g(n) > max{s(j, n) | j < q(n)}.
Since |Wp(n)| < q(n), it follows that

h(n) /∈ Wp(n), a contradiction, Q.E.D.

9



We write REC(X) = {f | f ≤T X}.

Corollary (Kjos-Hanssen, unpublished).

If REC(X) ⊆ BLR(0), then X is DNR-free.

Proof. The hypothesis easily implies that
X is weakly r.e.-traceable. Moreover,
since X ≤T 0′, X is either recursive or of
hyperimmune degree. If follows by the
previous theorem that X is DNR-free, Q.E.D.

The following paradox was conjectured by
Simpson and proved by Barmpalias.

Corollary (Barmpalias, unpublished).

∃f : ω → ω such that f ′ ≤wtt 0′ yet f 6≤wtt 0′.

Proof (Kjos-Hanssen, unpublished).

By the Superlow Basis Theorem,
let X be superlow of PA degree.
Since X is not DNR-free, apply the previous
corollary to get f ≤T X with f /∈ BLR(0).
Then f ′ ≤m X ′ ≤tt 0′, hence f ′ ≤wtt 0′,
but f 6≤wtt 0′, Q.E.D.
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Recall from Downey/Jockusch/Stob 1996
the property of array recursiveness:

(∃g ≤wtt 0′) (∀f ≤T X) (g dominates f).

We consider two variant properties:

1. weak array recursiveness:

(∀f ≤T X) (∃g ≤wtt 0′) (g dominates f).

2. strong array recursiveness:

(∃g ≤wtt 0′) (∀n) (ϕX
n (n) ↓⇒ ϕX

n (n) < g(n)).

Theorem (Simpson, unpublished). If X is
r.e., then X is weakly array recursive
iff REC(X) ⊆ BLR(0).

Remark. Downey/Greenberg/Weber 2006
have shown that this class of r.e. degrees is
naturally lattice-theoretically definable in the
r.e. degrees, as those which do not bound
a critical triple.

Remark. If X is not r.e., the theorem can fail
badly. See the first corollary below.
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First strengthen the Superlow Basis Theorem.

Theorem (Simpson, unpublished). If P ⊆ 2ω

is nonempty Π0
1, there exists X ∈ P which is

superlow and strongly array recursive.

Proof.

Write P � F = {Z ∈ P | ϕZ
n (n) ↑ ∀n ∈ F}.

Inductively define

f(n) =

{
1 if P � {m < n | f(m) = 0} ∪ {n} = ∅,
0 otherwise.

Let X ∈ P � {n | f(n) = 0}. Note that f is the

characteristic function of X ′ = {n | ϕX
n (n) ↓}.

X is superlow, because f(n) depends only on
whether P � F = ∅ for each F ⊆ {0,1, . . . , n}.
X is strongly array recursive, because
given n ∈ X ′ and Fn = {m < n | f(m) = 0},
we have ϕZ

n (n) ↓ for all Z ∈ P � Fn,
hence we can compute
g(n) = an upper bound for these values.

Q.E.D.
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Corollary (Simpson, unpublished).

There exists X which is superlow and strongly

array recursive, yet REC(X) 6⊆ BLR(0).

Proof. By our basis theorem above, let X be

superlow, strongly array recursive, and of PA

degree. Since X is not DNR-free, it follows

by Kjos-Hanssen that REC(X) 6⊆ BLR(0).

The same example shows:

Corollary (Simpson, unpublished).

There exists X which is superlow and strongly

array recursive, yet not weakly r.e.-traceable.

Remark. Much more can be said

about lowness and tameness properties of

arbitrary Turing oracles (not necessarily r.e.).

See also the talks at this meeting by

George Barmpalias, Noam Greenberg,

and Denis Hirschfeldt.
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