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Outline of this talk:

1. Foundations of mathematics (= f.o.m.).

2. The FOM mailing list.

3. History of recursion theory (= r.t.),
a.k.a. computability theory.

4. Two leading recursion theorists:
Sacks and Soare.

5. History of reverse mathematics (= r.m.).

6. Foundational aspects of r.m.

7. Uses of recursion theory in r.m.

8. An opportunity for the recursion theorists.

9. Reaction from the recursion theorists.

10. Symmetric ω-models of WKL0.

11. Symmetric β-models.

12. Muchnik and Medvedev degrees
of Π0

1 subsets of 2ω.
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Foundations of mathematics (f.o.m.):

Foundations of mathematics is the study of
the most basic concepts and logical structure
of mathematics as a whole. Among the most
basic mathematical concepts are:

number, set, function, algorithm,
mathematical definition, mathematical proof,
mathematical theorem, mathematical axiom.

Aristotle, Euclid, Descartes, Leibniz, . . . ,
Dedekind, Cantor, Frege, Russell, Zermelo,
Hilbert, Weyl, Brouwer, Skolem, Gödel,
Church, Turing, Post, Kleene, . . .

F.o.m. questions were the original motivation
of both recursion theory (a.k.a. computability
theory) and reverse mathematics.

Some key f.o.m. questions:

What is a computable function? What does it
mean for a problem to be unsolvable? What
are the appropriate axioms for mathematics?
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Mathematical logic:

In the post-war period, f.o.m. evolved into a
different subject, mathematical logic, which
largely lost touch with its f.o.m. roots.

The 4 main subdivisions of
mathematical logic are:

1. Model theory.

2. Set theory.

3. Recursion theory.

4. Proof theory.

For an overview, see Handbook of
Mathematical Logic, edited by J. Barwise,
1977, XI + 1165 pages.

Each of the 4 has become isolated from the
others. E.g., the panels on logic in the 20th
and 21st centuries, at ASL 2000 in Urbana.
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The FOM mailing list:

FOM is an automated e-mail list for
discussing foundations of mathematics. There
are currently more than 500 subscribers.
There have been almost 5000 postings.

FOM is maintained and moderated by S.
Simpson. The FOM Editorial Board consists
of M. Davis, H. Friedman, C. Jockusch, D.
Marker, S. Simpson, A. Urquhart.

FOM postings and information are available
on the web at

http://www.math.psu.edu/simpson/fom/

Friedman and Simpson founded FOM in
1997, to promote a controversial idea:
mathematical logic is or ought to be
driven by f.o.m. considerations.

f.o.m. = foundations of mathematics.
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History of recursion theory:

1930–1955:
Gödel, Turing, Church, Post, Kleene.
Motivated by f.o.m. considerations.
Unsolvability of the Halting Problem.
Unsolvability of the Entscheidungsproblem.
Turing degrees, i.e., degrees of unsolvability.
Recursive enumerability.

1944, Post’s Problem:
Does there exist an r.e. degree of unsolvability
different from that of the Halting Problem?

1956–1957:
Friedberg and Muchnik independently prove
the existence of such degrees. They
introduce a new and complicated method,
the priority method.

For more than 50 years – until 1996 – the
subject was known as “recursive function
theory” or, for short, “recursion theory”.
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Early 1960’s: Gerald Sacks.
The upper semi-lattice of r.e. Turing degrees.
Further structural results.
More complicated priority arguments.
Emphasis on methodology.
Finite injury versus infinite injury method.

Rejection of f.o.m. considerations.

“We regard an unsolved problem as
interesting only if it seems likely that its
solution requires a new trick.” Sacks, Degrees
of Unsolvability, 2nd edition, 1966, page 169.

“Remarks Against Foundational Activity”,
Historia Mathematica, 1975, pages 523–528.

Late 1960’s and 1970’s:
Sacks school (MIT and Harvard) pursue
“generalized” or “higher” recursion theory.
Inspired by Kleene’s hyperarithmetical theory,
via Kreisel. Well-connected to the rest of
mathematical logic, and to f.o.m.
“A crossroads of mathematical logic.”
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1970’s: Robert Soare.
Rejects “generalized” recursion theory.
Pursues “classical” recursion theory.
A narrowing of the scope of r.t.
Renewed emphasis on methodology.
The 0′′′ priority method.

Recursion theory as an art or a sport.
Comparison: classical r.t. = Renaissance art,
generalized r.t. = Baroque art.
(Soare 1978, 2000)

1990’s: Soare school (U of Chicago)
claim that priority methods are of great
importance in computer science.
Most computer scientists do not agree.

1996: Soare exercises leadership,
imposes wholesale change of terminology:
recursive becomes computable,
r.e. sets become c.e. sets, etc.
Bibliographic references are rewritten.
E.g., Cooper (MLQ, 2001, page 33)
changes the title of Post’s 1944 paper.
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History of reverse mathematics:

Kreisel 1960’s introduces several
subsystems of 2nd order arithmetic, including
∆1

1-CA, Σ1
1-AC, Σ1

1-DC, Π1∞-TI0.

Friedman 1967 (Ph.D. thesis, MIT)
introduces a system equivalent to ATR,
to show that Σ1

1-AC 6= Σ1
1-DC.

Simpson 1973 (Berkeley) lectures on
subsystems of 2nd order arithmetic and
their role in f.o.m. Printed lecture notes.

Steel 1973 shows that ATR ↔ comparability
of countable well orderings, over ∆1

1-CA.
This and other r.m. results appear in
Steel’s Ph.D. thesis, supervised by Simpson.

Friedman 1974 (ICM lecture) states the first
theme of reverse mathematics. Friedman
1975 (two JSL abstracts) introduces systems
with restricted induction, including RCA0.
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History of r.m. (continued):

Simpson 1982 (Cornell recursion theory
meeting) highlights the “big five”:
RCA0, WKL0, ACA0, ATR0, Π1

1-CA0.

Key r.m. papers by Simpson 1984 and
Friedman/Simpson/Smith 1985 on reverse
analysis, reverse algebra respectively.

Simpson from 1977 onward supervises
numerous Ph.D. theses at Penn State:
Smith, Brackin, Ferreira, Hirst, Brown, Yu,
Marcone, Humphreys, Giusto, . . . ,
and publishes numerous papers . . . .

Simpson 1998 finishes his book on
subsystems of 2nd order arithmetic and
reverse mathematics.

Simpson 1999 begins assembling the
companion volume,
Reverse Mathematics 2001.
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Two books on reverse mathematics:

1.

Stephen G. Simpson
Subsystems of Second Order Arithmetic
Perspectives in Mathematical Logic
Springer-Verlag, 1999
XIV + 445 pages

http://www.math.psu.edu/simpson/sosoa/

2.

S. G. Simpson (editor)
Reverse Mathematics 2001

A volume of papers by various authors,
to appear in 2001,
approximately 400 pages.

http://www.math.psu.edu/simpson/revmath/
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Current framework of reverse
mathematics:

Second order arithmetic (= Z2) is a
two-sorted system.

Number variables m,n, . . . range over

ω = {0,1,2, . . .} .

Set variables X, Y, . . . range over subsets of ω.

We have +, ×, = on ω, plus the membership
relation

∈ = {(n,X) : n ∈ X} ⊆ ω × P(ω) .

Within subsystems of Z2, we can formalize
contemporary rigorous mathematics (analysis,
algebra, geometry, combinatorics, . . . ).

Subsystems of Z2 are the basis of our current
understanding of the logical structure of
contemporary mathematics.
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Themes of reverse mathematics:

Let τ be a mathematical theorem. Let Sτ be

the weakest natural subsystem of Z2 in which

τ is provable.

1. Very often, the principal axiom of Sτ is

logically equivalent to τ .

2. Furthermore, only a few subsystems of Z2

arise in this way.

For a full exposition, see my book

Subsystems of Second Order Arithmetic,

Springer, 1999, XIV + 445 pages.
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Themes of r.m. (continued):

We develop a table indicating which
mathematical theorems can be proved in
which subsystems of Z2.

RCA0 WKL0 ACA0 ATR0 Π1
1-CA0

analysis (separable):

differential equations X X

continuous functions X, X X, X X

completeness, etc. X X X

Banach spaces X X, X X

open and closed sets X X X, X X

Borel and analytic sets X X, X X, X

algebra (countable):

countable fields X X, X X

commutative rings X X X

vector spaces X X

Abelian groups X X X X

miscellaneous:

mathematical logic X X

countable ordinals X X X, X

infinite matchings X X X

the Ramsey property X X X

infinite games X X X
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The hierarchy of consistency strengths:

strong



...
supercompact cardinal
...
measurable cardinal
...
ZFC (ZF set theory with choice)

Zermelo set theory

simple type theory

medium



Z2 (2nd order arithmetic)
...
Π1

2 comprehension

Π1
1 comprehension

ATR0 (arith. transfinite recursion)

ACA0 (arithmetical comprehension)

weak



WKL0 (weak König’s lemma)

RCA0 (recursive comprehension)

PRA (primitive recursive arithmetic)

EFA (elementary arithmetic)

bounded arithmetic
...
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Foundational consequences of r.m.:

1. We precisely classify mathematical
theorems, according to which subsystems
of Z2 they are provable in.

2. We identify certain subsystems of Z2 as
being mathematically natural. The
naturalness is rigorously demonstrated.

3. We work out the consequences of
particular foundational doctrines:

• recursive analysis (Pour-El/Richards)
• constructivism (Bishop)
• finitistic reductionism (Hilbert)
• predicativism (Weyl)
• predicative reductionism

(Feferman/Friedman/Simpson)
• impredicative analysis

(Takeuti/Schütte/Pohlers)
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Foundational consequences (continued):

By means of reverse mathematics, we identify

five particular subsystems of Z2 as being

mathematically natural. We correlate these

systems to traditional f.o.m. programs.

RCA0 constructivism Bishop

WKL0 finitistic reductionism Hilbert

ACA0 predicativism Weyl, Feferman

ATR0 predicative reductionism Friedman, Simpson

Π1
1-CA0 impredicativity Feferman et al.

We analyze these foundational proposals in

terms of their consequences for mathematical

practice. Under the various proposals, which

mathematical theorems are “lost”?

Reverse mathematics provides precise answers

to such questions.
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Uses of recursion-theoretic methods

in reverse mathematics:

Recursion-theoretic coding arguments have

been used to obtain counterexamples in

recursive algebra, recursive analysis, recursive

combinatorics, etc.

See Handbook of Recursive Mathematics,

two volumes, North-Holland, 1998, edited by

Ershov/Goncharov/Nerode/Remmel.

Many of these coding arguments have been

adapted and strengthened to obtain reversals

a la reverse mathematics.

In all cases that I have looked at, priority

arguments in this type of application are

irrelevant or can easily be eliminated.

Constructive content is thereby improved.
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Uses of r.-t. methods, continued:

Recursion theory has been used to construct
ω-models and β-models of subsystems of 2nd
order arithmetic.

Turing ideals give ω-models of RCA0.

Turing jump ideals give ω-models of ACA0.

Basis theorems for Π0
1 subsets of 2ω give

interesting ω-models of WKL0. Recently,
Medvedev and Muchnik degrees of nonempty
Π0

1 subsets of 2ω have been extremely useful.

Basis theorems in hyperarithmetical theory
give interesting β-models of ATR0 and Π1∞-TI0.

These techniques generalize to give wider
classes of models, including non-ω-models,
via an adaptation of generalized recursion
theory. Compare “reverse recursion theory”.

Priority arguments are largely irrelevant.
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Summary:

Reverse mathematics appears to be an
excellent opportunity for recursion theory to
reconnect with its f.o.m. roots. It is a rich
problem area where recursion-theoretic
methods can be applied to draw conclusions
which are of general intellectual interest.

Reaction from recursion theorists:

A large number of prominent recursion
theorists have reacted positively to r.m.

Cenzer, Cholak, Chong, Downey, Groszek,
Harrington, Jockusch, Lempp, Remmel,
Schmerl, Shore, Slaman, Steel, . . . have
contributed to r.m. by proving substantial
theorems and publishing substantial papers.

E.g., Richard Shore, while publicly expressing
lack of enthusiasm for foundational or f.o.m.
aspects, has also performed and supervised
some excellent published research in r.m.
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On the other hand, Robert Soare has reacted
quite negatively to r.m. In an FOM posting
of August 1999, Soare refers to:

“[. . . ] the HUGE GAPS in philosophy,
approach, and value of mathematical
items, between the REVERSE
MATHEMATICIAN and the ACTIVE
RESEARCHER in mathematics from
TOPOLOGY to COMPUTABILITY
THEORY. The former is eager to
analyze the proof strength, axiomatic
necessity, etc. of hypotheses but of
mostly EXISTING theorems, while the
working mathematician wants to get
on with proving NEW theorems [. . . ]”

(Soare’s emphasis)

implying that “reverse mathematicians” are
not active researchers, and that their work is
of relatively low value.
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Reaction, continued:

In e-mail to his own department head
(September 1999), Soare said:

“I have spent a month contacting
experts in logic and philosophy
looking for weaknesses in reverse
math. There are plenty. I am
prepared to publicly take apart reverse
math, its founders Friedman and
Simpson, their research their
publications and books, their fom [sic]
list (for which I have a large number
of strongly negative testimonials), and
many other things about them. I have
recruited helpers who will also send
msgs [messages] infom [sic] and
exfom [sic]. When this battle is over
all in the communityh [sic] will be sick
of hearing from any of us.”

Why this extreme level of hostility?
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Reaction, continued:

In private e-mail (September 1999), Soare
informed me that he had spent a month
gathering negative information about r.m.
and had prepared a massive jihad against r.m.
and me personally.

Why this extreme level of hostility?

This is more than the usual misunderstanding
of the goals of f.o.m.

What happened here?

I think Soare was upset because of the
success of FOM, interest shown in r.m., and
interest shown in f.o.m. generally.

I think Soare finds r.m. particularly disturbing,
because it uses many recursion-theoretic
results and methods, but not those of his
own specialty, r.e. sets and degrees and
priority methods.
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My current papers:

1. Simpson/Tanaka/Yamazaki (35 pages,
2000, to appear in APAL) contains many
conservation results for WKL0 over RCA0.

2. Simpson (26 pages, 2000, to appear in
Reverse Mathematics 2001) constructs
models of WKL0 where relative definability
equals Turing reducibility.

3. Simpson (8 pages, 2000) constructs
models of ATR0 and of Π1

∞-TI0 where relative
definability equals relative hyperarithmeticity.

4. Binns/Simpson (20 pages, 2001, under
revision) obtains lattice embedding results for
PM and Pw, the lattices of Medvedev and
Muchnik degrees of Π0

1 subsets of 2ω.

5. Simpson (2001, in preparation) studies
interesting subsets of PM and Pw.
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An interesting ω-model of WKL0:

Let P be the nonempty Π0
1 subsets of 2ω,

ordered by inclusion. Forcing with P is known
as Jockusch/Soare forcing.

Lemma (Simpson 2000). Let X be J/S
generic. Suppose Y ≤T X. Then (i) Y is J/S
generic, and (ii) X is J/S generic relative to
Y .

Theorem (Simpson 2000). There is an
ω-model M of WKL0 with the following
property: For all X, Y ∈M , X is definable
from Y in M if and only if X is Turing
reducible to Y .

Proof. M is obtained by iterated J/S forcing.
We have

M = REC[X1, X2, . . . , Xn, . . .]

where, for all n, Xn+1 is J/S generic over
REC[X1, . . . , Xn]. To show that M has the
desired property, we use symmetry arguments
based on the Recursion Theorem.
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Foundational significance of M:

The above ω-model, M , represents a

compromise between the conflicting needs of

(a) recursive mathematics (“everything is

computable”)

and

(b) classical rigorous mathematics as

developed in WKL0 (“every continuous

real-valued function on [0,1] attains a

maximum”, “every countable commutative

ring has a prime ideal”, etc etc).

Namely, M contains enough nonrecursive

objects for WKL0 to hold, yet the recursive

objects form the “definable core” of M .
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Foundational significance (continued):

More generally, consider the scheme

(*) For all X and Y , if X is definable
from Y then X is recursive in Y .

in the language of 2nd order arithmetic.

Often in mathematics, under some
assumptions on a given countably coded
object X, there exists a unique countably
coded object Y having some property stated
in terms of X. In this situation, (*) implies
that Y is Turing computable from X. This is
of obvious f.o.m. significance.

Simpson 2000 shows that, for every countable
model of WKL0, there exists a countable
model of WKL0 + (∗) with the same first order
part. Thus WKL0 + (∗) is conservative over
WKL0 for first order arithmetical sentences.
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Hyperarithmetical analogs:

Theorem (Simpson 2000). There is a

countable β-model M such that, for all

X, Y ∈M , X is definable from Y in M if and

only if X is hyperarithmetical in Y .

In the language of second order arithmetic,

consider the scheme

(**) for all X, Y , if X is definable from

Y , then X is hyperarithmetical in Y .

Theorem (Simpson 2000).

1. ATR0 + (∗∗) is conservative over ATR0

for Σ1
2 sentences.

2. Π1
∞-TI0 + (∗∗) is conservative over Π1

∞-TI0
for Σ1

2 sentences.
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Two new structures in recursion theory:

Recall that P is the set of nonempty Π0
1

subsets of 2ω.

Pw (PM) consists of the Muchnik (Medvedev)

degrees of members of P, ordered by

Muchnik (Medvedev) reducibility.

P is Muchnik reducible to Q (P ≤w Q) if for

all Y ∈ Q there exists X ∈ P such that

X ≤T Y .

P is Medvedev reducible to Q (P ≤M Q) if

there exists a recursive functional F : Q→ P .

Note: ≤M is a uniform version of ≤w.
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Pw and PM are countable distributive lattices
with 0 and 1.

The lattice operations are given by

P ×Q = {X ⊕ Y : X ∈ P, Y ∈ Q}
(least upper bound)

P +Q = {〈0〉_X : X ∈ P} ∪ {〈1〉_Y : Y ∈ Q}
(greatest lower bound).

P ≡ 0 in Pw if and only if P ∩REC 6= ∅.

P ≡ 0 in PM if and only if P ∩REC 6= ∅.

P ≡ 1 in Pw, i.e., P is Muchnik complete, if
and only if the Turing degrees of members of
P are exactly the Turing degrees of complete
extensions of PA. (Simpson 2001)

P ≡ 1 in PM , i.e., P is Medvedev complete, if
and only if P is recursively homeomorphic to
the set of complete extensions of PA.
(Simpson 2000)
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Trivially P,Q > 0 implies P +Q > 0, but we do
not know whether P,Q < 1 implies P ×Q < 1.

In Pw, for every P > 0, every countable
distributive lattice is lattice embeddable
below P . For PM we have partial results in
this direction.

To construct our lattice embeddings, we use
infinitary “almost lattice” operations, defined
in such a way that, if 〈Pi : i ∈ ω〉 is a recursive
sequence of members of P, then

∞∏
i=0

Pi and
∞∑
i=0

Pi

are again members of P. We also use a finite
injury priority argument a la Martin/Pour-El
1970 and Jockusch/Soare 1972. To push the
embeddings below P , we use a Sacks
preservation strategy.

This is ongoing joint work with my Ph. D.
student Stephen Binns.
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Corollary. In Pw, for all P >w 0 there exists Q

such that P >w Q >w 0.

(nonexistence of minimal Muchnik degrees)

Corollary. In PM , for all P >M 0 there exists

Q such that P >M Q >M 0.

(nonexistence of minimal Medvedev degrees)

The last corollary was also obtained by

Douglas Cenzer and Peter Hinman, using a

different method: index sets.

Problem area:

Study structural properties of the countable

distributive lattices Pw and PM . Lattice

embeddings, extensions of embeddings,

quotient lattices, cupping and capping,

automorphisms, definability, decidability, etc.
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An invidious comparison:

In some ways, the study of Pw and PM
parallels the study of RT , the Turing degrees

of recursively enumerable subsets of ω.

Analogy:
Pw
RT

=
WKL0

ACA0

A regrettable aspect of RT is that there are

no specific known examples of recursively

enumerable Turing degrees 6= 0,0′. (See the

extensive FOM discussion of July 1999, in the

aftermath of the Boulder meeting.)

In this respect, Pw and PM are much better.
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Invidious comparison (continued):

For example, we have:

Theorem. The set of Muchnik degrees of Π0
1

subsets of 2ω of positive measure contains a
maximum degree. This particular Muchnik
degree is 6= 0,1.

Question. What about Medvedev degrees?

The theorem follows from three known
results.

1. {X : X is 1-random} is Σ0
2 and of measure

one. (Martin-Löf 1966)

2. {X : ∃Y ≤T X (Y separates a recursively
inseparable pair of r.e. sets)} is of measure
zero. (Jockusch/Soare 1972)

3. If P ∈ P is of positive measure, then for all
1-random X there exists k such that
X(k) = λn.X(n+ k) ∈ P . (Kučera 1985)
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A related but apparently new result:

Theorem (Simpson 2000). If X is 1-random
and hyperimmune-free, then no Y ≤T X
separates a recursively inseparable pair of
r.e. sets.

Other related results:

1. If X is 1-random and of r.e. Turing
degree, then X is Turing complete.
(Kučera 1985)

2. {X : X is hyperimmune-free} is of
measure zero. (Martin 1967, unpublished)

Foundational significance:

All of these results are informative with
respect to ω-models of WWKL0. WWKL0 is a
subsystem of second order arithmetic which
arises in the Reverse Mathematics of measure
theory. (Yu/Simpson 1990)
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Some specific Medvedev degrees 6= 0,1:

For k ≥ 2 let DNRk be the set of k-valued

DNR functions. Each DNRk is recursively

homeomorphic to a member of P. DNR2 is

Medvedev complete. In PM we have

DNR2 >M DNR3 >M · · · >M
∞∑
k=2

DNRk .

All of these Medvedev degrees are Muchnik

complete. (Jockusch 1989)

Problem area:

Find additional natural examples of Medvedev

and Muchnik degrees 6= 0,1.

Experience suggests that natural examples

could be of significance for f.o.m.
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A related problem of Reverse Mathematics:

Let DNR(k) be the statement that for all X

there exists a k-valued DNR function relative

to X. It is known that, for each k ≥ 2,

DNR(k) is equivalent to Weak König’s

Lemma over RCA0. Is ∃k (k ≥ 2 ∧ DNR(k))

equivalent to Weak König’s Lemma over

RCA0?

This has a bearing on graph coloring

problems in Reverse Mathematics. See two

recent papers of James H. Schmerl, to appear

in MLQ and Reverse Mathematics 2001.

37



Another problem area:

One may study properties of interesting

subsets of Pw and PM . For example, we may

consider Muchnik and Medvedev degrees of

P ∈ P with the following special properties:

1. P is of positive measure.

2. P is thin, i.e., for all Π0
1 sets Q ⊆ P there

exists a clopen set U ⊆ 2ω such that

P ∩ U = Q. (See also the recent paper of

Cholak/Coles/Downey/Herrmann.)

3. P is separating, i.e.,

P = {X ∈ 2ω : X separates A,B}

where A,B is a disjoint pair of r.e. sets.

These classes of Medvedev and Muchnik

degrees are related in interesting ways.
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Theorem (Simpson 2001). Let P ⊆ 2ω be Π0
1

of positive measure of maximum Muchnik

degree. Let Q 6≡w 0 be a thin Π0
1 set. Then P

and Q are Muchnik incomparable, i.e.,

P 6≤w Q and Q 6≤w P .

Also, if P is as above and Q 6≡w 0 is

separating, then Q 6≤w P . (Jockusch/Soare

1972)

Theorem (Simpson 2001). Let P be as

above. Then P is non-capping in Pw. I.e.,

there do not exist P1, P2 >w P such that

P ≡w P1 + P2, the infimum of P1 and P2.

A lemma used in proving these theorems:

Lemma. If P,Q ∈ P and P ≤w Q, then there

exists R ⊆ Q, R ∈ P, such that P ≤M R.
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A picture of the Muchnik lattice Pw:
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Some of my papers are available at

http://www.math.psu.edu/simpson/papers/.

Transparencies for my talks are available at

http://www.math.psu.edu/simpson/talks/.

THE END
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