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Basis theorems.

A basis theorem is a theorem of the form:

For any nonempty effectively closed set

in Euclidean space, at least one member

of the set is “close to being computable”.

Some well known basis theorems are:

• the Low Basis Theorem,

• the R.E. Basis Theorem,

• the Hyperimmune-Free Basis Theorem,

• the Cone Avoidance Basis Theorem,

• the Randomness Preservation Basis Thm.

Less well known is a basis theorem of

Higuchi/Hudelson/Simpson/Yokoyama

on preservation of partial randomness.

Basis theorems are important for applications

to the foundations of mathematics: models

of arithmetic, Scott sets, ω-models of WKL0,

etc.

We discuss the possibilities for combining

these basis theorems.
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Three basis theorems.

Let ≤T denote Turing reducibility.

Let ′ denote the Turing jump operator.

The Low Basis Theorem:

For any nonempty effectively closed set Q,

there exists Z ∈ Q such that Z ′ ≤T 0′.

The R.E. Basis Theorem:

For any nonempty effectively closed set Q,

there exists Z ∈ Q such that Z is

of recursively enumerable Turing degree.

We say that Z is hyperimmune-free if

(∀ functions f ≤T Z) (∃ recursive function g)

∀n (f(n) < g(n)).

The Hyperimmune-Free Basis Theorem:

For any nonempty effectively closed set Q,

(∃Z ∈ Q) (Z is hyperimmune-free).

These three basis theorems are due to

Jockusch/Soare 1972.
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Can we combine these basis theorems?

No. The Jockusch/Soare basis theorems

are known to be “pairwise incompatible.”

1. The Arslanov Completeness Criterion

provides a nonempty effectively closed Q

such that for all r.e. sets A,

if (∃Z ∈ Q) (Z ≤T A) then 0′ ≤T A.

Therefore, the Low Basis Theorem and

the R.E. Basis Theorem cannot be

combined into one basis theorem.

2. It is known that for hyperimmune-free Z

one cannot have 0 <T Z ≤T 0′.

Therefore, the Hyperimmune-Free Basis

Theorem cannot be combined with the

Low Basis Theorem or with the R.E.

Basis Theorem.
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Two more basis theorems.

The Cone Avoidance Basis Theorem:

For any nonempty effectively closed set Q,

if A �T 0 then (∃Z ∈ Q) (A �T Z).

More generally,

if ∀i (Ai �T 0) then (∃Z ∈ Q)∀i (Ai �T Z).

Gandy/Kreisel/Tait, 1960.

Let MLR = {X | X is Martin-Löf random}.

Let MLRZ = {X | X is Martin-Löf random

relative to Z}.

The Randomness Preservation Basis Theorem:

For any nonempty effectively closed set Q,

if X ∈ MLR then (∃Z ∈ Q) (X ∈ MLRZ).

Reimann/Slaman, not yet published.

Downey/Hirschfeldt/Miller/Nies, 2005.

Simpson/Yokoyama, 2011.

5



More combinations of basis theorems?

It is known that Cone Avoidance can be

combined with the Low Basis Theorem, or

with the Hyperimmune-free Basis Theorem,

but not with the R.E. Basis Theorem. (See

for instance Downey/Hirschfeldt §2.19.3.)

Also, Randomness Preservation cannot be

combined with the Low or the R.E. or the

Hyperimmune-Free Basis Theorem.

Specifically, let Ω ∈ MLR be such that

Ω ≡T 0′. It is known that such reals exist

(Chaitin, Kučera/Gács). We then have:

1. Any Z ≤T 0′ such that Ω ∈ MLRZ

is K-trivial, hence not PA-complete.

(See Chapter 11 of Downey/Hirschfeldt 2010

or Chapter 5 of Nies 2009.)

2. Any hyperimmune-free Z such that

Ω ∈ MLRZ is recursive.

(See Theorem 8.1.18 of Nies 2009.)
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Combining basis theorems.

Low R.E. H.I.F. C.A. R.P.

Low 1 0 0 1 0

R.E. 0 1 0 0 0

H.I.Free 0 0 1 1 0

Cone Av. 1 0 1 1 ???

Rand. Pres. 0 0 0 ??? 1

Remaining question: Can Cone Avoidance

be combined with Randomness Preservation?

The answer to this question involves

LR-reducibility.

Define A ≤LR B ⇐⇒ MLRB ⊆ MLRA. Clearly

A ≤T B implies A ≤LR B, and it is known that

A ≤LR 0 implies A′ ≤T 0′. A major theorem of

Nies is that A ≤LR 0 ⇐⇒ A is K-trivial. See

Nies 2009 or Downey/Hirschfeldt 2010.
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A theorem which combines Cone Avoidance

and Randomness Preservation:

Theorem 1 (Simpson/Stephan, 2013).

For any nonempty effectively closed set Q,

if X ∈ MLR and ∀i (Ai �LR 0 or Ai �T X),

then (∃Z ∈ Q) (X ∈ MLRZ and ∀i (Ai �T Z)).

On the other hand, let Ω ∈ MLR be such that

Ω ≡T 0′. It is well known that such reals exist

(Chaitin, Kučera/Gács).

Theorem 2 (Simpson/Stephan, 2013).

∃ nonempty effectively closed set Q such that

(∀A ≤LR 0) (∀Z ∈ Q) (Ω ∈ MLRZ ⇒ A ≤T Z).

The proof uses a result of Miller 2010.

Summary of Theorems 1 and 2:

Randomness Preservation cannot be

combined with Cone Avoidance, but only

because A �T 0 does not imply A �LR 0.
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Preservation of partial randomness.

Let f : {0,1}∗ → [−∞,∞] be

an arbitrary recursive function.

For S ⊆ {0,1}∗ let wtf(S) =
∑

σ∈S 2−f(σ),

pwtf(S) = sup{wtf(P) | P ⊆ S prefix-free},

and JSK = {X ∈ {0,1}N | (∃σ ∈ S) (σ ⊂ X)}.

We say that X is strongly f-random if

X /∈
⋂
nJSnK for all uniformly r.e. Sn ⊆ {0,1}∗

such that ∀n (pwtf(Sn) ≤ 2−n).

Martin-Löf randomness is the special case

f(σ) = |σ|. In this case pwtf(S) = µ(JSK)

where µ is the fair coin measure on {0,1}N.

Partial Randomness Preservation:

For any nonempty effectively closed set Q,

if X is strongly f-random then (∃Z ∈ Q)

(X is strongly f-random relative to Z).

More generally, if ∀i (Xi is strongly fi-random)

then (∃Z ∈ Q) ∀i (Xi is strongly fi-random

relative to Z).

Higuchi/Hudelson/Simpson/Yokoyama, 2012.
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To what extent can we combine

Partial Randomness Preservation

with Cone Avoidance?

Theorem 3 (implicit in H/H/S/Y 2012).

For any nonempty effectively closed set Q,

if ∀i (Ai �LR 0 and Xi is strongly fi-random),

then (∃Z ∈ Q) ∀i (Ai �LR Z and Xi is strongly

fi-random relative to Z).

On the other hand, because of Theorem 2,

we cannot always replace ≤LR by ≤T.

Can we sometimes replace ≤LR by ≤T?

A typical open question:

Define X to be strongly half-random ⇐⇒

X is strongly f-random where f(σ) = |σ|/2.

If Q is nonempty effectively closed, and

if A �T 0 and X is strongly half-random,

does there exist Z ∈ Q such that A �T Z

and X is strongly half-random relative to Z?
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Proofs of Theorems 1 and 2.

To prove Theorem 1, we use

the Cone Avoidance Basis Theorem,

relativized to X.

To prove Theorem 2, we use

K = prefix-free Kolmogorov complexity.

(1) If Ω ∈ MLRZ then |K(n)−KZ(n)| ≤ O(1)

for infinitely many n. (Miller 2010.)

(2) If Ω ∈ MLRZ and Z is PA-complete,

then there exist a Z-recursive function F

and an infinite Z-recursive set A such that

|K(n)− F(n)| ≤ O(1) for all n ∈ A.

(3) Let C = plain Kolmogorov complexity.

Chaitin 1976 proved: every C-trivial real is

computable. Using F and A as in (2), we

similarly prove: every K-trivial real is ≤T Z.

Theorems 1 and 2 are in Simpson/Stephan,

2013, in preparation.
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Thank you for your attention!
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