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Motivation

The Lebesgue Differentiation Theorem states:

Theorem
Given f ∈ L1([0, 1]d) we can find a null set S such that

f (x) = lim
Q↘x

1

µ(Q)

∫
Q
f dµ (1)

for all x /∈ S . The limit is taken over all cubes Q containing x as
the diameter of Q tends to 0. Here µ is Lebesgue measure.

Question: What can we say about this null set?
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Effectively Open Sets

Definition

1. A set U ⊆ [0, 1]d is Σ0
1 if it is effectively open, i.e

U =
∞⋃
i=0

B(ai , ri )

where B(ai , ri ), i = 0, 1, . . . is a computable sequence of
rational balls.

2. A sequence of sets Un ⊆ [0, 1]d , n = 0, 1, 2, . . . is uniformly
Σ0
1 if

Un =
∞⋃
i=0

B(ani , rni )

for all n, where B(ani , rni ), n = 0, 1, 2, . . ., i = 0, 1, 2, . . . is a
computable double sequence of rational balls.
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Randomness

Definition
A Martin-Löf test is a uniformly Σ0

1 sequence of sets Un,
n = 0, 1, 2, . . . such that µ(Un) ≤ 1/2n for all n ∈ N. A point
x ∈ [0, 1]d is said to pass the test if x /∈

⋂∞
n=0 Un. We say that x is

Martin-Löf random if it passes every Martin-Löf test.

Definition
A Schnorr test is a Martin-Löf test, Un, n = 0, 1, 2, . . ., such that
µ(Un) is uniformly computable for all n. We say that x is Schnorr
random if it passes every Schnorr test.
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L1-Computability

Definition
A function f ∈ L1([0, 1]d) is L1-computable if there exists a
computable sequence of polynomials with rational coefficients,
denoted fn, such that

‖f − fn‖1 ≤
1

2n

for all n.

Theorem (Rough Statement)

x ∈ [0, 1]d is Schnorr random if and only if for all L1-computable
f : [0, 1]d → R,

f (x) = lim
Q↘x

1

µ(Q)

∫
Q
f dµ.
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Representative of f

Definition
Let f : [0, 1]d → R be L1-computable. Then by the previous
lemma, we can define a new function f̂ : [0, 1]d → R,

f̂ (x) =

{
limn→∞ fn(x) if the limit exists
0 otherwise

Remark
Note that f̂ is L1-equivalent to f .
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L1-computable functions → Schnorr tests

Theorem (P/Rojas/Simpson 2012, [3])

Let f : [0, 1]d → R be an L1-computable function.

1. There exists a Schnorr test such that for all x that pass the
test, limn→∞ fn(x) exists.

2. There exists a Schnorr test such that for all x that pass the
test,

lim
n→∞

fn(x) = f̂ (x) = lim
Q↘x

1

µ(Q)

∫
Q
f dµ.
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Schnorr tests → L1-computable functions

Theorem (P/Rojas/Simpson 2012, [3])

Let Un, n = 0, 1, 2, . . . be a Schnorr test. Then, there exists an
L1-computable function f : [0, 1]d → R such that for all
x ∈

⋂
n∈N Un,

lim
Q↘x

1

µ(Q)

∫
Q
f dµ

does not exist.
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Related Work

Theorem (Brattka/Miller/Nies 2011, [1])

Let z ∈ [0, 1]. Then,

1. z is computably random if and only if every nondecreasing
computable function f : [0, 1]→ R is differentiable at z .

2. z is Martin-Löf random if and only if every computable
function f : [0, 1]→ R of bounded variation is differentiable at
z .

3. z is weakly 2-random if and only if every almost everywhere
differentiable computable function f : [0, 1]→ R is
differentiable at z .
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Related Work-continued

Theorem (Freer/Kjos-Hanssen/Nies/Stephan 2013, [2])

Let z ∈ [0, 1]. Then z is computably random if and only if each
computable Lipschitz function f : [0, 1]→ R is differentiable at z .

Theorem (Freer/Kjos-Hanssen/Nies/Stephan 2013, [2])

Let z ∈ [0, 1]n and p ≥ 1 be a computable real. Then z is Schnorr
random if and only if z is a Lebesgue point of each Lp-computable
bounded function g : [0, 1]n → R.
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