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RECURSION THEORY

A string is a finite or infinite sequence of 0’s and 1’s. The set of all finite
strings is {0,1}<Y; elements are usually denoted as o or 7. The set of all
infinite strings is {0, 1}, also known as Cantor space; elements are usually
denoted as X or Y.

A function ¢ :c {0,1}N - {0,1}<V is partial recursive if it can be emulated
by a Turing machine, and recursive if it is partial recursive and total.

A set Ac{0,1}<V is recursively enumerable (r.e.) if there is a partial
recursive ¢ such that A = rng(yp).

Phil Hudelson Strong separations and Kolmogorov complexity 2 /14



PREFIX-FREE COMPLEXITY

A prefix-free machine is a partial recursive function
M :c {0,1}<N - {0,1}<N such that if M (o) | and o c 7 then M(7) 1.

We can view the string 7 as a description of the string o if M(7) = 0.

There is a universal prefix-free machine U: for any prefix-free machine M
there is a 737 such that U(ry"0) = M (o) for all o.

DEFINITION
The prefix-free complexity of ¢ is K(o) = min{|7| | U(7) = o}. J
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A NOTION OF PARTIAL RANDOMNESS

X | n means the length n initial segment of X.

THEOREM
X is Martin-Lof random if K(X [ n) >n-0(1).

Let f:N — N be recursive.

DEFINITION
X is f-complex or f-random if K(X I n) > f(n) - O(1).
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MOTIVATING STRONG SEPARATIONS

Let fs:N > [0,00) be defined by f(n) = sn for all n, and fixed recursive s.

If X is Martin-Lof random, then Y = X @ 0V is f1/2-random but not
fs-random for any s > 1/2.

It is clear in this example that the constructed Y still computes X, and that
X is fs-random for all 1/2<s < 1.

THEOREM (MILLER [5])

There is an X which is f;/;-random and does not compute any ¥ which is
fs-random for any s > 1/2.

QUESTION

For which recursive f and g does there exist an X which is f-random but does
not compute any Y which is g-random?
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CONVEX ORDER FUNCTIONS

An order function (or simply an order) is a recursive function f: N - N
which is unbounded and non-decreasing.

An order f is convex if additionally it does not grow too fast:
Q f(n+1)< f(n)+1 for all n, and
© f(n+1)=f(n) infinitely often.

Condition (2) above is equivalent to saying that lim, ., n - f(n) = o.

The function idy : N - N is an upper bound (modulo a constant) of every
convex order function.
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STRONG DOMINATION

Let f be an order. The increasing set of f is the set

Z(f) = {n|(Ym <n)(f(m) < f(n))}.

Let f,9:N - N be orders. We say that f is strongly dominated by g,
written f < g, if the sum

9l (M=9(n) ¢ o0
neZ(f)

is a recursive number.

Equivalently f <« g if there is a function A : N — N such that
g(n) 2 f(n) +h(f(n)) for all n and

S 9 ¢ o
neN

is a recursive number.
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EXTRACTING ADDITIONAL RANDOMNESS

THEOREM

Let f be a convex order. Then there is an X which is f-random, but which
does not compute any Y which is g-random for any order g > f.

Note that we defined f-random in terms of prefix-free complexity. If we
define f-random instead in terms of either monotone complexity or
a priori complexity, the theorem is still true.
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STRONG SEPARATION EXAMPLES

Choices of f might include*:
e f(n) = sn for recursive 0 < s < 1,
o f(n)=vn,
e f(n)=logyn, or
e f(n)=n-2logyn.

Choices of g might include*:

g(n) =(1+¢€)f(n) for recursive € > 0,
g(n) = f(n) +\/f(n).

g(n) = f(n) +2log, f(n), or

g(n) = f(n) +logy f(n) +2log, log, f(n).

* The theorem holds for real-valued functions in addition to integer-valued.
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EFFECTIVE HAUSDORFF DIMENSION

The effective Hausdorff dimension of X is the quantity (Mayordomo [4])

dim(X) = liminf M
n—00 n

Miller’s result essentially shows that there exists a Turing degree of effective
Hausdorff dimension 1/2.

The improved strong separation result can also be used to prove the following,
originally a theorem of Greenberg and Miller [2]:

THEOREM

There exists an X such that dim(X) =1 but X does not compute a
Martin-Lof random.

PROOF.
Let f(n) =|o|-2log, |o| and let g(n) = |o]. O
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AN APPLICATION TO DNR FUNCTIONS

p:N - N is diagonally non-recursive (DNR) if ¢, (n) # p(n) for all n.

THEOREM (KJOS-HANSSEN/MERKLE/STEPHAN [3])

X is f-random for some order f if and only if X wtt-computes a DNR
function p which is bounded by some recursive function g.

Then we can convert back and forth between recursively-bounded DNR, and
f-random. Then our main theorem on non-extraction of randomness gives a
new, bushy-tree free proof of the following theorem:

THEOREM (AMBOS-SPIES/KJ0S-HANSSEN/LEMPP/SLAMAN [1])

Let f:N~{0,1} - N be recursive. There is a DNR function p which is
recursively-bounded, yet which does not compute any f-bounded DNR
function gq.
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A FEW WORDS ON PROVING THE MAIN THEOREM

Large parts of the proof follow Miller’s construction of a Turing degree of
dimension 1/2. Some key techniques we use are the following:

e Equivalence between test and complexity definitions of f-randomness
@ An expanded notion of optimal covers
e Forcing conditions which are I19 sets of positive measure

@ The increasing set and strong domination allow us to look at
non-extraction in a meaningful way even when the base amount of
randomness is small (sublinear).
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Thank you for listening!
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