STRONG SEPARATIONS AND KOLMOGOROV COMPLEXITY

Phil Hudelson

Pennsylvania State University

April 28, 2013

Phil Hudelson

Strong separations and Kolmogorov complexity 1 / 14

A string is a finite or infinite sequence of 0's and 1's. The set of all finite strings is $\{0,1\}^{<\mathbb{N}}$; elements are usually denoted as σ or τ . The set of all infinite strings is $\{0,1\}^{\mathbb{N}}$, also known as Cantor space; elements are usually denoted as X or Y.

A function $\varphi :\subseteq \{0,1\}^{<\mathbb{N}} \to \{0,1\}^{<\mathbb{N}}$ is **partial recursive** if it can be emulated by a Turing machine, and **recursive** if it is partial recursive and total.

A set $A \subseteq \{0,1\}^{<\mathbb{N}}$ is **recursively enumerable (r.e.)** if there is a partial recursive φ such that $A = \operatorname{rng}(\varphi)$.

A **prefix-free machine** is a partial recursive function $M :\subseteq \{0,1\}^{<\mathbb{N}} \to \{0,1\}^{<\mathbb{N}}$ such that if $M(\sigma) \downarrow$ and $\sigma \subset \tau$ then $M(\tau) \uparrow$.

We can view the string τ as a description of the string σ if $M(\tau) = \sigma$.

There is a universal prefix-free machine U: for any prefix-free machine M there is a τ_M such that $U(\tau_M \hat{\sigma}) = M(\sigma)$ for all σ .

DEFINITION

The **prefix-free complexity** of σ is $K(\sigma) = \min\{|\tau| | U(\tau) = \sigma\}$.

A NOTION OF PARTIAL RANDOMNESS

 $X \upharpoonright n$ means the length n initial segment of X.

THEOREM X is Martin-Löf random if $K(X \upharpoonright n) \ge n - O(1)$.

Let $f : \mathbb{N} \to \mathbb{N}$ be recursive.

DEFINITION X is **f-complex** or **f-random** if $K(X \upharpoonright n) \ge f(n) - O(1)$.

MOTIVATING STRONG SEPARATIONS

Let $f_s : \mathbb{N} \to [0, \infty)$ be defined by f(n) = sn for all n, and fixed recursive s.

If X is Martin-Löf random, then $Y = X \oplus 0^{\mathbb{N}}$ is $f_{1/2}$ -random but not f_s -random for any s > 1/2.

It is clear in this example that the constructed Y still computes X, and that X is f_s -random for all $1/2 < s \le 1$.

THEOREM (MILLER [5])

There is an X which is $f_{1/2}$ -random and does not compute any Y which is f_s -random for any s > 1/2.

QUESTION

For which recursive f and g does there exist an X which is f-random but does not compute any Y which is g-random?

Phil Hudelson

An order function (or simply an order) is a recursive function $f : \mathbb{N} \to \mathbb{N}$ which is unbounded and non-decreasing.

An order f is **convex** if additionally it does not grow too fast:

- $f(n+1) \le f(n) + 1$ for all n, and
- 2 f(n+1) = f(n) infinitely often.

Condition (2) above is equivalent to saying that $\lim_{n\to\infty} n - f(n) = \infty$.

The function $\mathrm{id}_{\mathbb{N}}:\mathbb{N}\to\mathbb{N}$ is an upper bound (modulo a constant) of every convex order function.

STRONG DOMINATION

Let f be an order. The **increasing set** of f is the set $\mathcal{I}(f) = \{n \mid (\forall m < n)(f(m) < f(n))\}.$

Let $f, g: \mathbb{N} \to \mathbb{N}$ be orders. We say that f is **strongly dominated** by g, written $f \ll g$, if the sum

$$\sum_{\in \mathcal{I}(f)} 2^{f(n) - g(n)} < \infty$$

is a recursive number.

Equivalently $f \ll g$ if there is a function $h : \mathbb{N} \to \mathbb{N}$ such that $g(n) \ge f(n) + h(f(n))$ for all n and

n

$$\sum_{n \in \mathbb{N}} 2^{-h(n)} < \infty$$

is a recursive number.

Phil Hudelson

THEOREM

Let f be a convex order. Then there is an X which is f-random, but which does not compute any Y which is g-random for any order $g \gg f$.

Note that we defined *f***-random** in terms of prefix-free complexity. If we define *f***-random** instead in terms of either **monotone complexity** or **a priori complexity**, the theorem is still true.

STRONG SEPARATION EXAMPLES

Choices of f might include^{*}:

- f(n) = sn for recursive 0 < s < 1,
- $f(n) = \sqrt{n}$,
- $f(n) = \log_2 n$, or
- $f(n) = n 2\log_2 n$.

Choices of g might include^{*}:

•
$$g(n) = (1 + \epsilon)f(n)$$
 for recursive $\epsilon > 0$,

•
$$g(n) = f(n) + \sqrt{f(n)}$$
.

•
$$g(n) = f(n) + 2\log_2 f(n)$$
, or

• $g(n) = f(n) + \log_2 f(n) + 2 \log_2 \log_2 f(n)$.

* The theorem holds for real-valued functions in addition to integer-valued.

EFFECTIVE HAUSDORFF DIMENSION

The effective Hausdorff dimension of X is the quantity (Mayordomo [4])

$$\dim(X) = \liminf_{n \to \infty} \frac{\mathrm{K}(X \upharpoonright n)}{n}.$$

Miller's result essentially shows that there exists a Turing degree of effective Hausdorff dimension 1/2.

The improved strong separation result can also be used to prove the following, originally a theorem of Greenberg and Miller [2]:

Theorem

There exists an X such that $\dim(X) = 1$ but X does not compute a Martin-Löf random.

Proof.

Let $f(n) = |\sigma| - 2\log_2 |\sigma|$ and let $g(n) = |\sigma|$.

AN APPLICATION TO DNR FUNCTIONS

 $p: \mathbb{N} \to \mathbb{N}$ is diagonally non-recursive (DNR) if $\varphi_n(n) \neq p(n)$ for all n.

THEOREM (KJOS-HANSSEN/MERKLE/STEPHAN [3])

X is f-random for some order f if and only if X wtt-computes a DNR function p which is bounded by some recursive function g.

Then we can convert back and forth between recursively-bounded DNR and f-random. Then our main theorem on non-extraction of randomness gives a new, bushy-tree free proof of the following theorem:

THEOREM (AMBOS-SPIES/KJOS-HANSSEN/LEMPP/SLAMAN [1])

Let $f : \mathbb{N} \setminus \{0, 1\} \to \mathbb{N}$ be recursive. There is a DNR function p which is recursively-bounded, yet which does not compute any f-bounded DNR function q.

Large parts of the proof follow Miller's construction of a Turing degree of dimension 1/2. Some key techniques we use are the following:

- $\bullet\,$ Equivalence between test and complexity definitions of $f\mbox{-}{\rm randomness}$
- An expanded notion of **optimal covers**
- Forcing conditions which are Π_1^0 sets of positive measure
- The increasing set and strong domination allow us to look at non-extraction in a meaningful way even when the base amount of randomness is small (sublinear).

Thank you for listening!

References

- Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Slaman, <u>Comparing DNR and WWKL</u>, Journal of Symbolic Logic 69 (2004), no. 4, 1089–1104.
- Noam Greenberg and Joseph S. Miller, <u>Diagonally non-recursive functions</u> and effective Hausdorff dimension, Bulletin of the London Mathematical Society **43** (2011), no. 4, 636–654.
- Bjørn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan, <u>Kolmogorov</u> <u>complexity and the recursion theorem</u>, Transactions of the American Mathematical Society **363** (2011), no. 10, 5465–5480.
 - Elvira Mayordomo, <u>A Kolmogorov complexity characterization of</u> <u>constructive Hausdorff dimension</u>, Information Processing Letters **84** (2002), no. 1, 1–3.
 - Joseph S. Miller, <u>Extracting information is hard: A Turing degree of</u> <u>non-integral effective Hausdorff dimension</u>, Advances in Mathematics **226** (2011), no. 1, 373 – 384.