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Symbolic dynamics.

Let G be (Nd,+) or (Zd,+) where d ≥ 1.

Let A be a finite set of symbols.

We endow A with the discrete topology

and AG with the product topology.

The shift action of G on AG is given by

(Sgx)(h) = x(g + h) for g, h ∈ G and x ∈ AG.

A subshift is a nonempty set X ⊆ AG which is

topologically closed and shift-invariant,

i.e., x ∈ X implies Sgx ∈ X for all g ∈ G.

Symbolic dynamics is the study of subshifts.

If X ⊆ AG and Y ⊆ BG are subshifts,

a shift morphism from X to Y is

a continuous mapping Φ : X → Y such that

Φ(Sgx) = SgΦ(x) for all x ∈ X and g ∈ G.

By compactness, any shift morphism Φ is

given by a block code, i.e., a finite mapping

φ : AF → B where F is a finite subset of G and

Φ(x)(g) = φ(Sgx↾F) for all x ∈ X and g ∈ G.
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I have been applying recursion-theoretic

concepts such as Muchnik degrees and

Kolmogorov complexity to obtain

new results in symbolic dynamics.

Muchnik degrees of subshifts.

A subshift X is of finite type if it is given by

a finite set of excluded finite configurations:

X = {x ∈ AG | (∀g ∈ G) (Sgx↾F /∈ E)}
where E and F are finite.

Recall that Ew is the lattice of

Muchnik degrees of nonempty Π0
1 classes,

in Cantor space (or in Euclidean space).

Recall also that Ew includes many specific,

natural degrees which are associated with

foundationally interesting topics.

A picture of Ew is on slides 5 and 6.

Theorem (Simpson 2007). The Muchnik

degrees in Ew are precisely the Muchnik

degrees of Z2-subshifts of finite type.
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Proof. One direction is trivial, because

subshifts of finite type may be viewed as Π0
1

classes. My proof of the converse uses tiling

techniques which go back to Berger 1966,

Robinson 1971, and Myers 1974. Another

proof, due to Durand/Romashchenko/Shen,

uses “self-replicating tile sets.”

Corollary (Simpson 2007). We can construct

an infinite family of Z2-subshifts of finite type

which are strongly independent with respect

to shift morphisms, etc.

Proof. This follows from the existence of an

infinite independent set of degrees in Ew,

which is proved by means of a priority

argument.

Thus we have an application of recursion

theory (tiling methods plus priority argument)

to prove a result in symbolic dynamics which

does not mention computability concepts.
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A picture of Ew. Each black dot except

inf(a, 1) represents a specific, natural degree

in Ew. We shall explain some of these degrees.
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A picture of Ew. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, k =

complexity, d = diagonal nonrecursiveness.
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We now explain some degrees in Ew.

The top degree in Ew is 1 = degw(CPA)

where CPA is the problem of finding

a complete consistent theory which

includes Peano arithmetic (or ZFC, etc.).

We also have inf(a, 1) ∈ Ew where a is

any recursively enumerable Turing degree.

Moreover, a < b implies inf(a, 1) < inf(b, 1)

We have r1 ∈ Ew where r1 = degw(MLR),

MLR = {x ∈ 2N | x is Martin-Löf random}).

We also have inf(r2, 1) ∈ Ew where

r2 = degw({x ∈ 2N | x is 2-random}),
i.e., random relative to the halting problem.

Also d ∈ Ew where d =

degw({f | f is diagonally nonrecursive}),
i.e., ∀n (f(n) 6= ϕn(n)).
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Let REC = {g ∈ NN | g is recursive}.
Let C be any “nice” subclass of REC.

For instance C = REC, or C = {g ∈ REC |
g is primitive recursive}. We have dC ∈ Ew

where dC = degw({f ∈ NN | f is diagonally

nonrecursive and C-bounded}),
i.e., (∃g ∈ C)∀n (f(n) < g(n)).

Also, dC = degw({x ∈ 2N | x is C-complex},
i.e., (∃g ∈ C)∀n (K(x↾{1, . . . , g(n)}) ≥ n)}).
Moreover, dC′ < dC whenever C′ contains a

function which dominates all functions in C.

For x ∈ 2N let effdim(x) = the

effective Hausdorff dimension of x, i.e.,

effdim(x) = lim inf
n→∞

K(x↾{1, . . . , n})
n

.

Given a right recursively enumerable real

number s < 1, we have ks ∈ Ew where

ks = degw({x ∈ 2N | effdim(x) > s}).

Moreover, s < t implies ks < kt (Miller).
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More generally, let g : N → [0,∞) be an

unbounded computable function such that

g(n) ≤ g(n + 1) ≤ g(n) + 1 for all n.

For example, g(n) could be n/2 or n/3

or
√

n or 3
√

n or logn or logn + log logn or

log logn or the inverse Ackermann function.

Define kg = degw({x ∈ 2N | x is g-complex}),
i.e., ∃c∀n (K(x↾{1, . . . , n} ≥ g(n) − c).

Theorem (Hudelson 2010). We have kg < kh
provided g(n) + 2 log g(n) ≤ h(n) for all n.

In other words, there exists a g-complex real

with no h-complex real Turing reducible to it.

This is a generalization of Miller’s theorem

on the difficulty of information extraction.

References:

Phil Hudelson, Mass problems and initial segment
complexity, in preparation.

Joseph S. Miller, Extracting information is hard,
to appear in Advances in Mathematics.
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Letting z be a Turing oracle, define

MLRz = {x ∈ 2N | x is random relative to z}
and Kz(n) = the prefix-free Kolmogorov

complexity of n relative to z.

Define y ≤LR z ⇐⇒ MLRz ⊆ MLRy

and y ≤LK z ⇐⇒ ∃c∀n (Kz(n) ≤ Ky(n) + c).

Theorem (Miller/Kjos-Hanssen/Solomon).

We have y ≤LR z ⇐⇒ y ≤LK z.

For each recursive ordinal number α, let
0(α) = the αth iterated Turing jump of 0.
Thus 0(1) = the halting problem, and
0(α+1) = the halting problem relative to 0(α),
etc. This is the hyperarithmetical hierarchy.
We embed it naturally into Ew as follows.

Theorem (Simpson 2009). 0(α) ≤LR z

⇐⇒ every Σ0
α+2 set includes a Σ

0,z
2 set

of the same measure. Moreover,

letting bα = degw({z | 0(α) ≤LR z}) we have

inf(bα, 1) ∈ Ew and inf(bα, 1) < inf(bα+1, 1).
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A picture of Ew. Here a = any r.e. degree,

r = randomness, b = LR-reducibility, k =

complexity, d = diagonal nonrecursiveness.
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Two subshifts are said to be conjugate if

they are topologically isomorphic, i.e.,

there is a shift isomorphism between them.

The basic problem of symbolic dynamics is:

classify subshifts up to conjugacy invariance.

Muchnik degrees can help, because the

Muchnik degree of a subshift is a conjugacy

invariant. Each of the Muchnik degrees in Ew

including 0, 1, r1, d, dREC, dC, ks, kg,

inf(r2, 1), inf(bα, 1), and even inf(a, 1)

may be viewed as a conjugacy invariant for

subshifts of finite type.

It is interesting to compare the Muchnik

degree of a subshift X with other conjugacy

invariants, e.g., the entropy of X.

Generally speaking, the Muchnik degree of X

represents a lower bound on the complexity of

the orbits, while the entropy of X is an upper

bound on the complexity of these same orbits.
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History:

Kolmogorov 1932 developed his “calculus of

problems” as a nonrigorous yet compelling

explanation of Brouwer’s intuitionism. Later

Medvedev 1955 and Muchnik 1963 proposed

Medvedev degrees and Muchnik degrees as

rigorous explications of Kolmogorov’s idea.

Some references:

Stephen G. Simpson, Mass problems and randomness,
Bulletin of Symbolic Logic, 11, 2005, pages 1–27.

Stephen G. Simpson, An extension of the recursively
enumerable Turing degrees, Journal of the London
Mathematical Society, 75, 2007, pages 287–297.

Stephen G. Simpson, Mass problems and intuitionism,
Notre Dame Journal of Formal Logic, 49, 2008, pages
127–136.

Stephen G. Simpson, Mass problems and
measure-theoretic regularity, Bulletin of Symbolic
Logic, 15, 2009, pages 385–409.

Stephen G. Simpson, Medvedev degrees of
2-dimensional subshifts of finite type, to appear in
Ergodic Theory and Dynamical Systems.

Stephen G. Simpson, Entropy equals dimension equals
complexity, 2010, in preparation.
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A possibly interesting research program:

Given a subshift X, explore the relationship

between the dynamical properties of X

and the degree of unsolvability of X,

i.e., its Muchnik degree, degw(X).

For example, the entropy of X is a

well-known dynamical property which serves

as an upper bound on the complexity of

orbits. In particular ent(X) > 0 implies

(∃x ∈ X) (x is not computable).

By contrast, the degree of unsolvability of X
serves as a lower bound on the complexity of

orbits. For instance, degw(X) > 0 ⇐⇒
(∀x ∈ X) (x is not computable).

Theorem (Hochman). If X is of finite type

and minimal (i.e., every orbit is dense), then

degw(X) = 0.

More generally, the theorem holds for all

Π0
1 subshifts, not necessarily of finite type.
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Some new (?) results on subshifts:

Let d be a positive integer, let A be a finite
set of symbols, and let X be a nonempty
subset of AG where G is Nd or Zd.

The Hausdorff dimension, dim(X), and the
effective Hausdorff dimension, effdim(X), are
defined as usual with respect to the standard
metric ρ(x, y) = 2−|Fn| where n is as large as
possible such that x↾Fn = y↾Fn.

Here Fn is {1, . . . , n}d if G = Nd,

or {−n, . . . , n}d if G = Zd.

We first state some old results.

1. effdim(X) = sup
x∈X

effdim(x).

2. effdim(x) = lim inf
n→∞

K(x↾Fn)

|Fn|
.

3. effdim(X) = dim(X)

provided X is effectively closed, i.e., Π0
1.

Here K denotes Kolmogorov complexity.
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Theorem (Simpson 2010). Assume that X is

a subshift, i.e., X is closed and shift-invariant.

Then

effdim(X) = dim(X) = ent(X).

Moreover

dim(X) ≥ lim sup
n→∞

K(x↾Fn)

|Fn|
for all x ∈ X,

and

dim(X) = lim
n→∞

K(x↾Fn)

|Fn|
for some x ∈ X.

Note. In the above theorem, there is no

finiteness or computability hypothesis on the

subshift X. Moreover, X can be a G-subshift

where G is Nd or Zd for any positive integer d.

Remark. Here ent(X) denotes entropy,

ent(X) = lim
n→∞

log2 |{x↾Fn | x ∈ X}|
|Fn|

.

This is known to be a conjugacy invariant.
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Remark. The proof of our theorem involves

ergodic theory (Shannon/McMillan/Breiman,

the Variational Principle, etc.) plus a

combinatorial argument which is similar to

the proof of the Vitali Covering Lemma.

Remark. So far as I can tell, everything in

the theorem is new, except the following

old result due to Furstenberg 1967:

dim(X) = ent(X) provided G = N.

The proof of this special case is much easier.

Remark. The above theorem is an outcome

of my discussions at Penn State during

February–April 2010 with many people

including John Clemens, Mike Hochman,

Dan Mauldin, Jan Reimann, and Sasha Shen.

THE END.

THANK YOU!
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