Mass Problems to the Rescue! Stephen G. Simpson Department of Mathematics Pennsylvania State University http://www.math.psu.edu/simpson/ August 16, 2004 Note: This is an abstract of a 25-minute invited talk, to be given as part of a special session, Computability Theory and Applications, which will be part of meeting of the American Mathematical Society, October 23–24, 2004, to be held at Northwestern University, in Evanston, Illinois. ## Abstract Let \mathcal{R}_T be the countable upper semilattice of recursively enumerable Turing degrees. Post's 1944 paper suggested two profound problems concerning \mathcal{R}_T , both of which remain unsolved. (1) To find a specific, natural example of a recursively enumerable Turing degree other than 0' and 0. (2) To find a "smallness property" of the complement of a coinfinite recursively enumerable set A which ensures that the Turing degree of Ais < 0'. The purpose of this talk is to point out that, by moving to a slightly wider context, one obtains satisfactory solutions to problems (1) and (2). Instead of \mathcal{R}_T , consider the countable distributive lattice \mathcal{P}_w of weak degrees, a.k.a., Muchnik degrees, of mass problems associated with nonempty Π_1^0 subsets of 2^{ω} . It is known that \mathcal{R}_T is embedded in \mathcal{P}_w via a natural embedding which carries 0' and 0 to the top and bottom elements of \mathcal{P}_w , respectively. We identify \mathcal{R}_T with its image in \mathcal{P}_w under this embedding. Regarding problem (1), there are a variety of specific, natural degrees in \mathcal{P}_w which are related to foundationally interesting topics such as reverse mathematics, algorithmic randomness, subrecursive hierarchies, and computational complexity. Unfortunately, all of these specific, natural degrees in \mathcal{P}_w turn out to be incomparable with all of the recursively enumerable Turing degrees, except 0' and 0. Regarding problem (2), it turns out that there are "smallness properties" of nonempty Π_1^0 sets $P \subseteq 2^\omega$, analogous to simplicity, hypersimplicity, and hyperhypersimplicity, each of which implies that the weak degree of P is < 0'. (Some of this work is joint with Stephen Binns.)