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Background: the r.e. Turing degrees

For X, Y ⊆ ω = {0,1,2, . . .},
X is Turing reducible to Y (i.e., X ≤T Y )

iff X is computable using an oracle for Y .

The Turing degrees are the equivalence

classes under ≤T , ordered by ≤T .

The l.u.b. of two Turing degrees is given by

X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y }.

X ⊆ ω is r.e. (i.e., recursively enumerable)

iff it is the range of a recursive function.

An r.e. Turing degree is a Turing degree that

contains an r.e. set.

RT is the semilattice of r.e. Turing degrees.

This structure has been studied extensively by

recursion theorists.
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Background, continued:

RT is the semilattice of r.e. Turing degrees.

Intensive study of lattice-theoretic properties

of RT has yielded nothing for f.o.m.

Moreover, after 50 years, the only known

specific examples of r.e. Turing degrees are

the bottom and top elements of RT .

0 = Turing degree of recursive sets.

0′ = Turing degree of the Halting Problem.

There are infinitely many r.e. Turing degrees,

but there are no known “natural” ones,

other than 0 and 0′.
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A picture of the r.e. Turing degrees, RT :

0 = solvable problem

0’ = the halting problem
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Theme of this talk:

We embed the upper semilattice of r.e.

Turing degrees, RT , into another structure,

Pw, which is

1. slightly larger,

2. somewhat better behaved,

3. much more relevant to f.o.m.

(= foundations of mathematics).
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An extension of the r.e. Turing degrees:

We define the Muchnik lattice Pw.

The Cantor space is 2ω = {X : ω → {0,1}}.

For P,Q ⊆ 2ω, P is Muchnik reducible to Q
(P ≤w Q) iff every member of Q computes a
member of P , i.e., ∀Y ∈ Q ∃X ∈ P X ≤T Y .

Muchnik degrees are equivalence classes of
subsets of 2ω under ≤w, ordered by ≤w.

The l.u.b. of two Muchnik degrees is given by
P ×Q = {X ⊕ Y : X ∈ P and Y ∈ Q}.
The g.l.b. is given by P ∪Q.

P ⊆ 2ω is Π0
1 iff P is the set of paths through

a recursive subtree of the full binary tree of
finite sequences of 0’s and 1’s.

Pw is the lattice of Muchnik degrees of
nonempty Π0

1 subsets of 2ω.

(It is important here that 2ω is compact.)
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Muchnik reducibility:

P Q

X Y

P ≤w Q means:

∀Y ∈ Q ∃X ∈ P X ≤T Y .

P,Q are given by recursive subtrees of the full

binary tree of finite sequences of 0’s and 1’s.

X, Y are infinite (nonrecursive) paths through

P,Q respectively.
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An extension, continued:

Properties of Pw, the lattice of Muchnik
degrees of nonempty Π0

1 subsets of 2ω:

(a) Pw is a distributive lattice. Thus, its
structure is more regular than that of RT .

Pw has a bottom and a top element:

0 = the Muchnik degree of 2ω,

1 = the Muchnik degree of the set of
completions of theories that are
sufficiently strong, in the sense of the
Gödel/Rosser Theorem: EFA, PA, Z2, ZFC, . . . .

(b) There are at least two other “natural”
Muchnik degrees in Pw. See below.

In these important senses, the Muchnik
lattice Pw is better than RT , the semilattice
of r.e. Turing degrees. It overcomes some of
the well known deficiencies of RT .
(Simpson, August 1999, on FOM)
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A picture of the Muchnik lattice Pw:
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An extension, continued:

Two “natural” Muchnik degrees in Pw.

MLR = the Muchnik degree of the set of
Martin-Löf random sequences of 0’s and 1’s.
(essentially due to Kučera 1985)

FPF = the Muchnik degree of the set of
fixed-point-free functions, in the sense of the
Arslanov Completeness Criterion.
(Simpson 2002)

In Pw we have 0 < FPF < MLR < 1.

F.o.m. connection: The Muchnik degrees
MLR and FPF correspond to subsystems of
WKL0 which arise in the Reverse Mathematics
of measure theory (Yu/Simpson 1990) and
continuous functions (Giusto/Simpson 2000),
respectively. The Muchnik degree 1
corresponds to WKL0 itself.

Problem: Find additional “natural” Muchnik
degrees in Pw.
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MLR = the Muchnik degree of the set of

Martin-Löf random (1-random) reals

= the maximum Muchnik degree of a

Π0
1 subset of 2ω of positive measure.

(implicit in Kučera 1985)

FPF = the Muchnik degree of the set of

fixed-point-free functions

= the Muchnik degree of the set of

diagonally non-recursive functions

= the Muchnik degree of the set of

effectively immune sets

= the Muchnik degree of the set of

effectively biimmune sets

(implicit in Jockusch 1989)
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Some additional “natural” Muchnik

degrees in Pw:

MLR2 = the Muchnik degree of R2 ∪ PA,

where R2 is the set of 2-random reals,

and PA is the set of complete extensions

of Peano Arithmetic.

FPFn, n = 2,3, . . ., where FPF1 = FPF and

FPFn+1 = {f ⊕ g : f ∈ FPFn, g ∈ FPFf}.

In Pw we have:

MLR < MLR2 < 1, and

FPF < FPF2 < FPF3 < · · · < FPFn < · · ·.
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A picture of the Muchnik lattice Pw:

FPF
FPF^2

FPF^3

FPF^n

MLR_2

r. e.
Turing
degrees

the

MLR

�
�
�

�
�
�

0

1
�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

13



An extension, continued:

Further properties of the Muchnik lattice Pw.

1. Pw is a countable distributive lattice.

Every countable distributive lattice is lattice

embeddable in every initial segment of Pw.

(Binns/Simpson 2001)

2. For all P > 0 there exist P1, P2 < P

such that P = l.u.b.(P1, P2).

(Stephen Binns, 2002)

3. There does not exist P < 1 such that

l.u.b.(P,MLR) = 1. (Simpson 2001)

4. There do not exist P1, P2 > MLR such that

g.l.b.(P1, P2) = MLR. (Simpson 2001)

5. If P > 0 is thin, then P is Muchnik

incomparable with MLR. (Simpson 2001)
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6. There do not exist P1, P2 > 0 such that

g.l.b.(P1, P2) = 0. (trivial)

7. If S ⊆ 2ω is Σ0
3, then for all Π0

1 P ⊆ 2ω

there exists Π0
1 Q ⊆ 2ω such that Q is

Muchnik equivalent to S ∪ P . (Simpson 2002)

8. Given P ≥w FPF, we have a semilattice

embedding of the r.e. Turing degrees into Pw,

given by X 7→ {X} ∪ P . (Simpson 2002)

In particular, we have these three

“natural” embeddings:

The Gödel/Rosser embedding, X 7→ {X} ∪ 1.

The Martin-Löf embedding, X 7→ {X} ∪MLR.

The Arslanov embedding, X 7→ {X} ∪ FPF.
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Three “natural” embeddings
of the r.e. Turing degrees
into the Muchnik lattice Pw:
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An extension, continued:

As we have seen,

the r.e. Turing degrees are embedded in Pw.

Technical Note: Using a generalized Arslanov

criterion, we can embed a wider class of

Turing degrees: those that are ≤ 0′ and

n-REA for some n ∈ ω.

Summary: The intensively studied

semilattice of r.e. Turing degrees, RT ,
is included in the mathematically more

natural, but less studied, Muchnik lattice, Pw.

Moral: By studying the Muchnik lattice Pw
instead of the r.e. Turing degrees, recursion

theorists could connect better to f.o.m.
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Foundations of mathematics (f.o.m.):

Foundations of mathematics is the study of

the most basic concepts and logical structure

of mathematics as a whole.

Among the most basic mathematical

concepts are:

number, set, function, algorithm,

mathematical definition, mathematical proof,

mathematical theorem, mathematical axiom.

Some big names in f.o.m. are:

Aristotle, Euclid, Descartes, Leibniz, . . . ,

Dedekind, Cantor, Frege, Russell, Zermelo,

Hilbert, Weyl, Brouwer, Skolem, Gödel,

Church, Turing, Post, Kleene, . . .
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F.o.m. and Reverse Mathematics:

A key f.o.m. question:

What are the appropriate axioms for

mathematics?

Reverse Mathematics examines a specific

case of this question:

What axioms are needed to prove specific,

known theorems of ordinary mathematics?

We examine this question in the context of

subsystems of Z2.

Z2 = second order arithmetic.
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Reverse Mathematics (continued):

In reverse mathematics, we develop a table
indicating precisely which mathematical
theorems can be proved in which subsystems
of Z2.

RCA0 WKL0 ACA0 ATR0 Π1
1-CA0

analysis (separable):

differential equations X X

continuous functions X, X X, X X

completeness, etc. X X X

Banach spaces X X, X X

open and closed sets X X X, X X

Borel and analytic sets X X, X X, X

algebra (countable):

countable fields X X, X X

commutative rings X X X

vector spaces X X

Abelian groups X X X X

miscellaneous:

mathematical logic X X

countable ordinals X X X, X

infinite matchings X X X

the Ramsey property X X X

infinite games X X X
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Foundational consequences of reverse

mathematics:

By means of reverse mathematics, we identify

five particular subsystems of Z2 as being

mathematically natural. We correlate these

systems to traditional f.o.m. programs.

RCA0 constructivism Bishop

WKL0 finitistic reductionism Hilbert

ACA0 predicativism Weyl, Feferman

ATR0 predicative reductionism Friedman, Simpson

Π1
1-CA0 impredicativity Feferman et al.

We analyze these foundational proposals in

terms of their consequences for mathematical
practice. Under the various proposals, which

mathematical theorems are “lost”?

Reverse mathematics provides precise answers

to such questions.
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Two books on reverse mathematics:

1.

Stephen G. Simpson
Subsystems of Second Order Arithmetic
Perspectives in Mathematical Logic
Springer-Verlag, 1999
XIV + 445 pages

http://www.math.psu.edu/simpson/sosoa/

2.

S. G. Simpson (editor)
Reverse Mathematics 2001

A volume of papers by various authors,
to appear,
approximately 400 pages.

http://www.math.psu.edu/simpson/revmath/
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An introduction to WKL0:

RCA0 = Σ0
1 induction

+ ∆0
1 (i.e., recursive) comprehension

(“formalized recursive mathematics”)

WKL0 = RCA0+ Weak König’s Lemma:

Every infinite subtree of the full binary tree of
finite sequences of 0’s and 1’s has an infinite
path. (a “formalized compactness principle”)

T
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Reverse Mathematics for WKL0:

WKL0 is equivalent over RCA0 to each of the
following mathematical statements:

1.The Heine/Borel Covering Lemma: Every
covering of [0,1] by a sequence of open
intervals has a finite subcovering.

2. Every covering of a compact metric space
by a sequence of open sets has a finite
subcovering.

3. Every continuous real-valued function on
[0,1] (or on any compact metric space) is
bounded (uniformly continuous, Riemann
integrable).

6. The Maximum Principle: Every continuous
real-valued function on [0,1] (or on any
compact metric space) has (or attains) a
supremum.
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R. M. for WKL0 (continued):

7. The local existence theorem for solutions

of (finite systems of) ordinary differential

equations.

8. Gödel’s Completeness Theorem: every

finite (or countable) set of sentences in the

predicate calculus has a countable model.

9. Every countable commutative ring has a

prime ideal.

10. Every countable field (of characteristic 0)

has a unique algebraic closure.

11. Every countable formally real field is

orderable.

12. Every countable formally real field has a

(unique) real closure.
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R. M. for WKL0 (continued):

13. Brouwer’s Fixed Point Theorem: Every

(uniformly) continuous function

φ : [0,1]n → [0,1]n has a fixed point.

14. The Separable Hahn/Banach Theorem:

If f is a bounded linear functional on a

subspace of a separable Banach space, and if

‖f‖ ≤ 1, then f has an extension f̃ to the

whole space such that ‖f̃‖ ≤ 1.

15. Banach’s Theorem: In a separable

Banach space, given two disjoint convex open

sets A and B, there exists a closed hyperplane

H such that A is on one side of H and B is

on the other.

16. Every countable k-regular bipartite graph

has a perfect matching.
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Some of my papers are available at

http://www.math.psu.edu/simpson/papers/.

Transparencies for my talks are available at

http://www.math.psu.edu/simpson/talks/.

THE END
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