Computable Symbolic Dynamics

Stephen G. Simpson
Pennsylvania State University
http://www.math.psu.edu/simpson/
simpson@math.psu.edu

NSF-DMS-0600823, NSF-DMS-0652637, Grove Endowment, Templeton Foundation

11th Asian Logic Conference
National University of Singapore
June 22-27, 2009

A 1-dimensional dynamical system is an ordered pair (Y,T) where $T:Y\to Y$. The elements of the set Y are the states of the system, and T is the state transition function. Given a state $y\in Y$, the orbit or trajectory of y is the sequence T^ny , $n=0,1,2,\ldots$ One considers the behavior of T^ny as n goes to infinity.

Often one assumes that Y is a compact Polish space and T is a homeomorphism of Yonto Y. Thus for each $y \in Y$ one can consider the biinfinite trajectory $T^n y$, $n \in \mathbb{Z}$.

Given a partition C_1, \ldots, C_k of Y, define $X \subseteq \{1, \ldots, k\}^{\mathbb{Z}}$ by $X = \{x \mid (\exists y \in Y) \ (\forall n \in \mathbb{Z}) \ (T^n y \in C_{x(n)})\}.$ Thus x is the "trace" or "code" of y in the symbolic system (X, S). Here $S: X \to X$ is the shift operator given by (Sx)(n) = x(n+1).

If Y is compact and C_1, \ldots, C_k are closed subsets of Y, then X is a compact subset of $\{1, \ldots, k\}^{\mathbb{Z}}$.

We think of (X, S) as a symbolic representation of (Y, T).

Thus symbolic dynamical systems are useful in the study of arbitrary dynamical systems.

* * * * *

All of the concepts above can be generalized, replacing \mathbb{Z} by an arbitrary group G. In this talk we always assume that G is computable.

Many results concern the d-dimensional case, $G = \mathbb{Z}^d$. However, some results hold for an arbitrary computable group G.

Let $A = \{a_1, \dots, a_k\}$ be an alphabet, i.e., a finite set of symbols. Let G be a computable group. We write $A^G = \{x \mid x : G \to A\}$.

Let σ, τ, \ldots range over functions $\sigma: F \to A$ where $F = \text{dom}(\sigma)$ is a finite subset of G. The set of such functions is denoted A_*^G . For $\sigma \in A_*^G$ let

$$N_{\sigma} = \{x \in A^G \mid x \mid \mathsf{dom}(\sigma) = \sigma\}.$$

The N_{σ} 's are a basis for the standard product topology on A^G . Thus $C \subseteq A^G$ is topologically closed if and only if $C = A^G \setminus \bigcup_{\sigma \in D} N_{\sigma}$ for some $D \subseteq A_*^G$. If D is computable, we say that C is *effectively closed*, i.e., Π_1^0 .

The shift action S of G on A^G is given by $(S^gx)(h) = x(gh)$ for all $x \in A^G$ and $g, h \in G$.

A G-subshift is a set $X \subseteq A^G$ which is nonempty, topologically closed, and closed under the action of G, i.e., $x \in X$ implies $S^g x \in X$.

We write

$$Seq(x) = \{ \sigma \in A_*^G \mid \exists g (x^g \upharpoonright dom(\sigma) = \sigma) \}.$$

This notation is inspired by the book *Ramsey Theory* by Graham, Rothschild and Spencer.

Given $E \subseteq A_*^G$ let

$$X_E = \{ x \in A^G \mid \text{Seq}(x) \cap E = \emptyset \}$$

provided this set is nonempty.

Clearly X_E is a subshift.

We say that the subshift X_E is defined by a set of excluded configurations, E.

If E is finite, we say that X_E is of finite type.

If E is computable, we say that X_E is of computable type.

It can be shown that a subshift is of computable type if and only if it is effectively closed. It is known that any subshift is defined by a set of excluded configurations.

In other words, given a subshift X we can find $E \subseteq A_*^G$ such that $X = X_E$.

It is known that most or all subshifts which arise in practice are of computable type. Here is a precise general result.

Theorem 1. Let G act effectively on an effectively closed, effectively totally bounded set Y in an effectively presented complete separable metric space. For each $a \in A$ let C_a be an effectively closed subset of Y. Let

 $E = \{ \sigma \mid \neg (\exists y \in Y) \ (\forall g \in \text{dom}(\sigma)) \ (S^g y \in C_{x(g)}) \}.$ If $X_E \neq \emptyset$ then X_E is of computable type.

Let P(X) be the problem of finding a point of X. We have the following theorem.

Theorem 2 (Michael Hochman, 2008). If X is of computable type and *minimal* (i.e., every orbit is dense), then P(X) is algorithmically solvable.

Proof. Write $Seq(X) = \bigcup_{x \in X} Seq(x)$. Because X is minimal, we have

$$(\forall x, y \in X) \, \forall F \, \exists g \, (x^g \mid F = y \mid F),$$

i.e.,

$$(\forall x, y \in X) \, \forall F \, \forall g \, \exists h \, (x^g \restriction F = y^h \restriction F),$$

i.e.,

$$(\forall x, y \in X) (\operatorname{Seq}(x) = \operatorname{Seq}(y)).$$

Thus

$$\sigma \in \operatorname{Seq}(X) \Leftrightarrow (\forall x \in X) (\sigma \in \operatorname{Seq}(x))$$
$$\Leftrightarrow \forall x (x \in X \Rightarrow \exists g (x^g \upharpoonright \operatorname{dom}(\sigma) = \sigma))$$

and a Tarski/Kuratowski computation shows that Seq(X) is Σ_1^0 , i.e., it is the range of a computable sequence. On the other hand,

$$\sigma \in \operatorname{Seq}(X) \Leftrightarrow (\exists x \in X) \,\exists g \, (x^g \upharpoonright \operatorname{dom}(\sigma) = \sigma)$$
$$\Leftrightarrow \exists y \, (y \in X \land y \upharpoonright \operatorname{dom}(\sigma) = \sigma)$$

and a Tarski/Kuratowski computation shows that $\operatorname{Seq}(X)$ is Π_1^0 , i.e., it is the complement of a Σ_1^0 set. It follows that $\operatorname{Seq}(X)$ is Δ_1^0 , i.e., computable. Now fix a computable sequence of finite sets $\emptyset = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_n \subset \cdots$ with $\bigcup_{n=0}^\infty F_n = G$. Starting with $\sigma_0 = \emptyset$ and given $\sigma_n \in \operatorname{Seq}(X)$ with $\operatorname{dom}(\sigma_n) = F_n$, search for $\sigma_{n+1} \in \operatorname{Seq}(X)$ extending σ_n with $\operatorname{dom}(\sigma_{n+1}) = F_{n+1}$. Finally $x = \bigcup_{n=0}^\infty \sigma_n$ is a point of X and is computable, Q.E.D.

Remark. Theorems 1 and 2 hold more generally, when G is a recursively presented semigroup with identity.

If $G = \mathbb{Z}^d$ we say that X is d-dimensional.

We now consider 1-dimensional subshifts, i.e., $G = \mathbb{Z}$.

Theorem 3 ("classical"). If X is 1-dimensional of finite type, then X contains periodic points.

Corollary. If X is 1-dimensional and of finite type, then P(X) is algorithmically solvable.

Theorem 4 (Cenzer/Dashti/King, 2006). If X is 1-dimensional of computable type, then P(X) can be algorithmically unsolvable.

Theorem 5 (Joseph S. Miller, 2008). If X is 1-dimensional of computable type, then P(X) can have any desired degree of unsolvability.

This immediately implies the theorem of Cenzer/Dashti/King.

Restatement of Miller's theorem:

Given a nonempty effectively closed set $C \subseteq \{0,1\}^{\mathbb{N}}$, we can find a 1-dimensional subshift $X \subseteq \{0,1\}^{\mathbb{Z}}$ of computable type, plus computable functionals $\Phi: C \to X$ and $\Psi: X \to C$.

Proof of Miller's theorem. We write $\{0,1\}^* = \bigcup_{n=0}^{\infty} \{0,1\}^n = \{\text{finite strings of 0's and 1's}\}.$ For $s \in \{0,1\}^*$ define $a_s,b_s \in \{0,1\}^*$ by induction on the length of s as follows. Start with $a_{\emptyset} = 0$ and $b_{\emptyset} = 1$. Given a_s and b_s define

$$a_{s0} = a_s a_s a_s a_s b_s, \quad a_{s1} = a_s a_s a_s b_s b_s,$$

$$b_{s0} = a_s a_s b_s b_s b_s, \quad b_{s1} = a_s b_s b_s b_s b_s$$

and note that a_s is the middle fifth of a_{s0} and a_{s1} while b_s is the middle fifth of b_{s0} and b_{s1} .

Given $C \subseteq \{0,1\}^{\mathbb{N}}$ let $Q_C = \bigcup_{z \in C} Q_z \subseteq \{0,1\}^{\mathbb{Z}}$ where

$$Q_z = \{x \mid \forall n \ (x \text{ is made of } a_{z \upharpoonright n} \text{'s and } b_{z \upharpoonright n} \text{'s})\}.$$

It is straightforward to show that if C is nonempty and effectively closed then Q_C is a subshift of computable type. Moreover, we have computable functionals $\Phi:C\to Q_C$ and $\Psi:Q_C\to C$ given by $\Phi(z)=\bigcup_{n=0}^\infty a_z\!\!\upharpoonright_n$ and $\Psi(x)=$ the unique $z\in C$ such that $x\in Q_z$. Thus, letting $X=Q_C$, we have the desired result, Q.E.D.

Remark. For each $z \in \{0,1\}^{\mathbb{N}}$, Q_z is a minimal subshift. Thus Q_C is a dynamical system with the property that the orbit closure of every point is minimal. This property of dynamical systems is apparently somewhat unusual.

Now for the 2-dimensional case, $G = \mathbb{Z} \times \mathbb{Z}$.

Theorem 6 (Berger, 1965). If X is 2-dimensional of finite type, then X can be aperiodic, i.e., it has no periodic points.

Theorem 7 (Myers, 1974). If X is 2-dimensional of finite type, then P(X) can be algorithmically unsolvable.

Theorem 8 (Simpson, 2007). If X is 2-dimensional of finite type, then P(X) can have any desired degree of unsolvability.

In other words, given a nonempty effectively closed set $C \subseteq \{0,1\}^{\mathbb{N}}$, we can find a 2-dimensional subshift $X \subseteq \{0,1\}^{\mathbb{Z} \times \mathbb{Z}}$ of finite type along with computable functionals $\Phi: C \to X$ and $\Psi: X \to C$.

This immediately implies Myers's theorem, which immediately implies Berger's theorem.

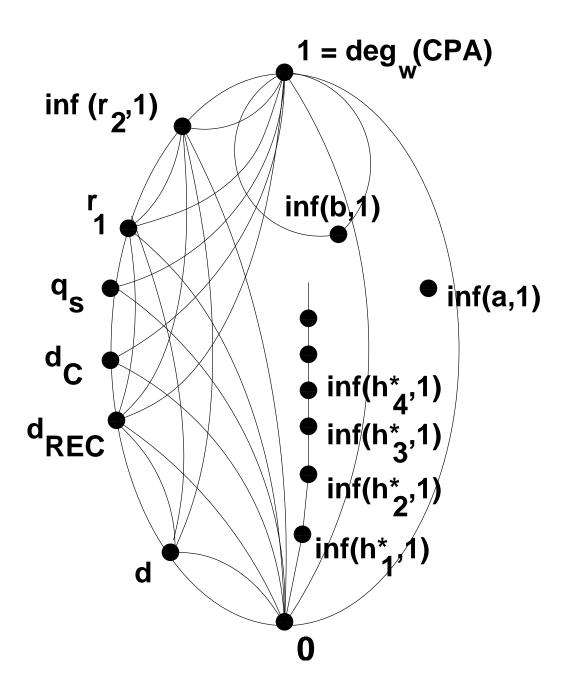
The proofs of these theorems concerning 2-dimensional subshifts of finite type are rather difficult. Cf. tilings of the plane.

Remark. Hochman and Meyerovitch have proved that a positive real number is the entropy of a 2-dimensional subshift of finite type if and only if it is the limit of a computable descending sequence of rational numbers.

Remark. An interesting research program is as follows. Given a 2-dimensional subshift of finite type, to correlate its dynamical properties with its degree of unsolvability.

Remark. My recent research on mass problems shows that there are many specific, natural degrees of unsolvability here. See also the next slide, where \mathcal{P}_w is the lattice of weak degrees of nonempty Π_1^0 subsets of $2^{\mathbb{N}}$.

Remark. Theorem 8 says that \mathcal{P}_w is the same as the lattice of weak degrees of 2-dimensional subshifts of finite type.



A picture of \mathcal{P}_w . Here $\mathbf{a} = \text{any r.e. degree}$, $\mathbf{h} = \text{hyperarithmeticity}$, $\mathbf{r} = \text{randomness}$, $\mathbf{b} = \text{a.e. domination}$, $\mathbf{q} = \text{dimension}$, $\mathbf{d} = \text{diagonal nonrecursiveness}$.

In classifying dynamical systems, the discovery of new invariants is extremely important. For instance, Kolmogorov introduced the entropy invariant in order to prove that the (1/2,1/2)-Bernoulli shift and the (1/3,1/3,1/3)-Bernoulli shift are not measure-theoretically isomorphic.

Let X be a d-dimensional subshift of computable type. Then deg(X), the degree of unsolvability of the problem P(X), is a topological invariant of X which appears to be new and different.

Compare $\deg(X)$ with $\operatorname{ent}(X)$, the topological entropy of X. Both $\deg(X)$ and $\operatorname{ent}(X)$ represent bounds on the complexity of the orbits of X, but these bounds are quite different. Namely, $\operatorname{ent}(X)$ is an upper bound (cf. the work of Lutz/Hitchcock/Mayordomo on effective Hausdorff dimension), while $\deg(X)$ is a lower bound.