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Foundations of mathematics is the study of the
most basic concepts and logical structure of
mathematics as a whole.

Reverse mathematics is a particular research
program in the foundations of mathematics.

The goal of reverse mathematics is to classify core
mathematical theorems up to logical equivalence,
according to which set-existence axioms are needed to
prove them.

This is carried out in the context of subsystems of
second order arithmetic.

This leads to a remarkably regular structure. A large
number of theorems fall into a small number of
equivalence classes.

2



Books on reverse mathematics:

Stephen G. Simpson

Subsystems of Second Order Arithmetic

Perspectives in Mathematical Logic

Springer-Verlag, 1999, XIV + 445 pages

(out of print)

S. G. Simpson (editor)

Reverse Mathematics 2001

(a volume of papers by various authors)

Lecture Notes in Logic

Association for Symbolic Logic

2005, X + 401 pages

Stephen G. Simpson

Subsystems of Second Order Arithmetic

Second Edition

Perspectives in Logic

Association for Symbolic Logic

approximately 460 pages, in press
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Reverse mathematics of measure theory.

The first wave:

In 1987 Simpson and X. Yu introduced a

subsystem of second order arithmetic known

as WWKL0. The principal axiom of WWKL0 is

equivalent to

∀X ∃Y (Y is random relative to X).

Many theorems of measure theory are

equivalent to this axiom.

Example: the Vitali Covering Theorem.

See Brown/Giusto/Simpson, Archive for

Mathematical Logic, 41, 2003, 191–206.
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The second wave:

N. Dobrinen and S. Simpson, Almost

everywhere domination, Journal of Symbolic

Logic, 69, 2004, 914–922, considered the

reverse mathematics of measure-theoretic

regularity statements:

1. Every Gδ set includes an Fσ set of the

same measure.

2. Every Gδ set includes a closed set of

measure within an arbitrarily small epsilon.

3. Every Gδ set of positive measure includes

a closed set of positive measure.
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By Dobrinen/Simpson, the corresponding

set-existence axioms are:

1. For all A there exists B such that B is

uniformly almost everywhere dominating

relative to A.

2. For all A there exists B such that B is

almost everywhere dominating relative to

A.

3. For all A there exists B such that B is

positive measure dominating relative to A.

Definition. B is said to be almost

everywhere dominating if, for measure one

many X, each X-computable function is

dominated by some B-computable function.

Here B-computable means: computable using

B as a Turing oracle.
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There is a close relationship between a. e.
domination and effective randomness.

Definition (Nies 2002).
We say that A is LR-reducible to B if

∀X (X is B-random ⇒ X is A-random).

Theorem 1 (Kjos-Hanssen 2005).

B is positive measure dominating
⇐⇒ 0′ ≤LR B.

Here 0′ is a Turing oracle for the Halting
Problem.

Theorem 2
(Binns/Kjos-Hanssen/Miller/Solomon 2006).

B is uniformly almost everywhere dominating
⇐⇒ B is almost everywhere dominating
⇐⇒ B is positive measure dominating.

Thus, it seems likely that all of the
measure-theoretic regularity statments
considered by Dobrinen/Simpson fall into the
same reverse mathematics classification.
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Because of this work by Kjos-Hanssen and

Binns/Kjos-Hanssen/Miller/Solomon, it

seems foundationally desirable to improve our

understanding of the binary relation A ≤LR B,

and especially of the set {B | 0′ ≤LR B}.

Here is a recent characterization of ≤LR in

terms of Kolmogorov complexity.

Definition (Nies 2002).

We say that A is LK -reducible to B if

KB(τ) ≤ KA(τ) + O(1).

Here KB denotes prefix-free Kolmogorov

complexity relative to the Turing oracle B.

Theorem 3 (B/K-H/M/S 2006).

A ≤LR B ⇐⇒ A ≤LK B.

This is an improvement of some earlier

results due to Nies 2002. In particular, Nies

had proved that A ≤LR 0 ⇐⇒ A ≤LK 0.
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Another recent result:

Theorem 4 (Simpson 2006).

If A ≤LR B and A is recursively enumerable,

then A′ is truth-table computable from B′.

Here B′ denotes the Turing jump of B.

Corollary (Simpson 2006).

If 0′ ≤LR B then B is superhigh, i.e., 0′′ is

truth-table computable from B′.

Again, these results improve on some earlier

results due to Nies 2002.

The corollary seems especially interesting,

because 0′ ≤LR B ⇐⇒

B is almost everywhere dominating.
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Remark. Nies/Hirschfeldt/Stephan have

shown that four concepts coincide:

1. A is low-for-random, i.e., A ≤LR 0.

2. A is basic-for-random, i.e., A ≤T X for

some A-random X.

3. A is low-for-K, i.e., K(τ) ≤ KA(τ) + O(1).

4. A is K-trivial, i.e., K(A ↾ n) ≤ K(n)+O(1).

Question. How does this play out in the

context of LR-reducibility? Specifically, can

we characterize LR-reducibility in terms of

relative K-triviality?

Note. We can characterize relative

K-triviality in terms of LR-reducibility.

Namely, A is K-trivial relative to B

⇐⇒ A ⊕ B ≤LR B.
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Caution. A ≤LR 0 ⇐⇒ A is low-for-random.

However, A ≤LR B is not equivalent to A

being low-for-random relative to B, even in

the special case A = 0′.

What actually holds is:

A is low-for-random relative to B

⇐⇒ A ⊕ B ≤LR B.

This binary relation is not transitive!

Caution. If A ≤LR 0 and B ≤LR 0 then

A ⊕ B ≤LR 0. This follows from results of

Nies, Advances in Mathematics, and the

Downey/Hirschfeldt/Nies/Stephan paper,

“Trivial reals”.

However, A ≤LR C and B ≤LR C do not imply

A ⊕ B ≤LR C.

In fact, we can find a C such that 0′ ≤LR C

(i.e., C is almost everywhere dominating),

but 0′ ⊕ C 6≤LR C

(i.e., 0′ is not low-for-random relative to C).
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Question. If A ≤LR X and X is A-random,

does it follow that A ≤LR 0?

This would be an improvement of the Hungry

Sets Theorem, due to

Hirschfeldt/Nies/Stephan. This theorem has

≤T instead of ≤LR.

Question. If A is random and A ≤LR B and

B is C-random, does it follow that A is

C-random?

This would be an improvement of a theorem

of Miller/Yu 2004, which has ≤T instead of

≤LR.
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Reverse mathematics of general topology.

Background:

In my book Subsystems of Second Order

Arithmetic, a complete separable metric

space is defined as the completion X = ( ̂A, ̂d)

of a countable pseudometric space (A, d).

Here A ⊆ N and d : A × A → R.

Thus complete separable metric spaces are

“coded” by countable objects. Using this

coding, a great deal of analysis and geometry

is developed in RCA0, with many reverse

mathematics results.

However, until recently, there was no reverse

mathematics study of general topology.
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The obstacle was, there was no way to

discuss abstract topological spaces in L2, the

language of second order arithmetic. This

was the case even for topological spaces

which are separable or second countable.

To overcome this conceptual difficulty,

Mummert and Simpson introduced a

restricted class of topological spaces, called

the countably based MF spaces.

This class includes all complete separable

metric spaces, as well as many nonmetrizable

spaces.

Furthermore, this class of spaces can be

discussed in L2.
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Details:

Let P be a poset, i.e., a partially ordered set.

Definition. A filter is a set F ⊆ P such that

1. for all p, q ∈ F there exists r ∈ F such that

r ≤ p and r ≤ q.

2. F is upward closed, i.e.,

(q ≥ p ∧ p ∈ F) ⇒ q ∈ F .

Compare the treatment of forcing in Kunen’s

textbook of axiomatic set theory.

Definition. A maximal filter is a filter which

is not properly included in any other filter.

By Zorn’s Lemma, every filter is included in a

maximal filter.

Definition.

MF(P) = {F | F is a maximal filter on P}.
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Definition.

MF(P) = {F | F is a maximal filter on P}.

MF(P) is a topological space with basic open

sets

Np = {F | p ∈ F}

for all p ∈ P .

Definition. An MF space is a space of the

form MF(P) where P is a poset.

Definition. A countably based MF space is a

space of the form MF(P) where P is a

countable poset.

Thus, the second countable topological space

MF(P) is “coded” by the countable poset P .

Therefore, countably based MF spaces can be

defined and discussed in L2. Thus we can do

reverse mathematics in the usual setting,

subsystems of second order arithmetic.
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Examples:

Theorem (Mummert/Simpson).

Every complete (separable) metric space is

homeomorphic to a (countably based) MF

space.

Many of the topological spaces which arise in

analysis and geometry are complete separable

metric spaces. Therefore, they may be

viewed as countably based MF spaces.

On the other hand, there are many other

(countably based) MF spaces which are not

metrizable.

An example is the Baire space ωω with the

topology generated by the Σ1
1 sets, i.e., the

Gandy/Harrington topology. This space plays

a key role in modern descriptive set theory

(Kechris, Hjorth, et al).
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Recently, Carl Mummert and Frank Stephan

have characterized the countably based MF

spaces up to homeomorphism as the second

countable T1 spaces with the strong Choquet

property.

References:

Carl Mummert and Stephen G. Simpson,

Reverse Mathematics and Π1
2 Comprehension,

Bulletin of Symbolic Logic, 11, 2005, pages

526–533.

Carl Mummert, Ph.D. thesis, On the Reverse

Mathematics of General Topology, 2005,

Pennsylvania State University, VI + 102

pages.

Forthcoming papers of Mummert,

Mummert/Stephan, etc.
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A new research direction:

the reverse mathematics of topological

measure theory.

By means of countably based MF spaces, one

can formulate many interesting reverse

mathematics problems in the area of

topological measure theory. For example, one

can consider the reverse mathematics of weak

convergence of measures on general

topological spaces (Billingsley, Topsøe, et al).
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Mass problems (informal discussion):

A “decision problem” is the problem of

deciding whether a given n ∈ ω belongs to a

fixed set A ⊆ ω or not. To compare decision

problems, we use Turing reducibility. A ≤T B

means that A can be computed using an

oracle for B.

A “mass problem” is a problem with a not

necessarily unique solution. By contrast, a

“decision problem” has only one solution.

The “mass problem” associated with a set

P ⊆ ωω is the “problem” of computing an

element of P .

The “solutions” of P are the elements of P .

One mass problem is said to be “reducible”

to another if, given any solution of the

second problem, we can use it as an oracle to

compute some solution of the first problem.

20



Mass problems (rigorous definition):

Let P and Q be subsets of ωω.

We view P and Q as mass problems.

We say that P is weakly reducible to Q if

(∀Y ∈ Q) (∃X ∈ P) (X ≤T Y ) .

This is abbreviated P ≤w Q.

Summary:

P ≤w Q means that, given any solution of the

mass problem Q, we can use it as a Turing

oracle to compute a solution of the mass

problem P .
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The lattice Pw:

We focus on Π0
1 subsets of 2ω, i.e.,

P = {paths through T} where T is a recursive

subtree of 2<ω, the full binary tree of finite

sequences of 0’s and 1’s.

We define Pw to be the set of weak degrees

of nonempty Π0
1 subsets of 2ω, ordered by

weak reducibility.

Basic facts about Pw:

1. Pw is a distributive lattice, with l.u.b.

given by P × Q = {X ⊕ Y | X ∈ P, Y ∈ Q}, and

g.l.b. given by P ∪ Q.

2. The bottom element of Pw is the weak

degree of 2ω.

3. The top element of Pw is the weak degree

of PA = {completions of Peano Arithmetic}.

(Scott/Tennenbaum).
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Weak reducibility of Π0
1 subsets of 2ω:

X Y

QP

P ≤w Q means:

(∀Y ∈ Q) (∃X ∈ P) (X ≤T Y ).

P, Q are given by infinite recursive subtrees of

the full binary tree of finite sequences of 0’s

and 1’s.

X, Y are infinite (nonrecursive) paths through

P, Q respectively.
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Embedding RT into Pw:

Let RT be the upper semilattice of recursively

enumerable Turing degrees.

Theorem (Simpson 2002):

There is a natural embedding φ : RT → Pw.

The embedding φ is given by

φ : degT (A) 7→ degw(PA ∪ {A}).

Note: PA∪ {A} is not a Π0
1 set. However, it is

of the same weak degree as a Π0
1 set. This is

a non-obvious fact.

The embedding φ is one-to-one and preserves

≤, l.u.b., and the top and bottom elements.

The one-to-oneness is not obvious.

Convention:

We identify RT with its image in Pw under φ.

In particular, we identify 0′, 0 ∈ RT with the

top and bottom elements of Pw.
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A picture of the lattice Pw:

r. e.
Turing
degrees

the

0’ = PA
�
�
�
�

�
�
�

�
�
�

0
RT is embedded in Pw. 0′ and 0 are the top
and bottom elements of both RT and Pw.
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Specific, natural degrees in Pw:

A fundamental open problem concerning the

recursively enumerable Turing degrees is to

find a specific, natural example of such a

degree, other than 0 and 0′.

In the Pw context, we have discovered many

specific, natural degrees which are > 0 and

< 0′.

The specific, natural degrees in Pw which we

have discovered are related to foundationally

interesting topics:

• effective randomness,

• diagonal nonrecursiveness,

• reverse mathematics,

• subrecursive hierarchies,

• computational complexity.
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r. e.
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0’ = PA

0

Note. Except for 0′ and 0, the r.e. Turing

degrees are incomparable with all of these

specific, natural degrees in Pw.
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Some specific, natural degrees in Pw.

rn = the weak degree of the set of n-random
reals.

d = the weak degree of the set of diagonally
nonrecursive functions.

dREC = the weak degree of the set of
diagonally nonrecursive functions which are
recursively bounded.

Theorem
(Simpson 2002, Ambos-Spies et al 2004)

In Pw we have

0 < d < dREC < r1 < inf(r2, 0′) < 0′.

Theorem (Simpson 2002).

1. r1 is the maximum weak degree of a Π0
1

subset of 2ω which is of positive measure.

2. inf(r2, 0′) is the maximum weak degree of
a Π0

1 subset of 2ω whose Turing upward
closure is of positive measure.
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Another specific, natural degree in Pw is

provided by the work of Kjos-Hanssen and

Binns/Kjos-Hanssen/Miller/Solomon on

almost everywhere domination.

Definition. Let m = degw(AED) where

AED = {B | B is almost everywhere

dominating}.

It can be shown that inf(m, 0′) belongs to Pw.

Again, this is not obvious, because AED ∪ PA

is not Π0
1.

Interestingly, inf(m, 0′) lies below some

recursively enumerable Turing degrees which

are strictly below 0′. This is in contrast to

the behavior of r1, inf(r2, 0′), d, and dREC.
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Note how the behavior of inf(m, 0′) contrasts

with that of inf(r2, 0′), r1, dREC, and d.

Questions????
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Some additional examples ?

It seems reasonable to think that additional

examples of specific, natural degrees in Pw

could be obtained by replacing measure by

Hausdorff dimension.

For rational s with 0 ≤ s ≤ 1, let

Qs = {X ∈ 2ω | dim(X) = s}. Here dim

denotes effective Hausdorff dimension as

defined by Jack Lutz.

The Qs’s are uniformly Σ0
3, so by the

Embedding Lemma we have

qs = degw(Qs) ∈ Pw and

q>s = inft>s qt ∈ Pw. By “dilution” we have

qs ≤ qt ≤ r1 for all s < t.

Question. What other relationships hold

among the qs’s?
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Question. What relationships hold among

the qs’s?

Conceivably qs < qt < r1 for all s < t ≤ 1. At

the other extreme, it is possible that qs = r1
for all s > 0.

This is essentially just Reimann’s “dimension

extraction problem”. The problem is, does

dim(X) > 0 imply existence of Y ≤T X such

that Y is random? Does 0 < dim(X) < 1

imply existence of Y ≤T X such that

dim(Y ) > dim(X)?

Question. What relationships hold among

the qs’s and other specific, natural degrees in

Pw such as r1, dREC, d, etc.?

Question. Can we find specific, natural

degrees in Pw analogous to inf(m, 0′),

replacing positive measure domination by

positive Hausdorff dimension domination,

positive effective Hausdorff dimension

domination, etc.?
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Smallness properties of Π0
1 subsets of 2ω.

There are many “smallness properties” of Π0
1

sets P ⊆ 2ω which insure that the weak
degree of P is > 0 and < 0′. Here is one
result of this type.

Definition.

A Π0
1 set P ⊆ 2ω is said to be thin if,

for all Π0
1 sets Q ⊆ P , P \ Q is Π0

1.

Thin perfect Π0
1 subsets of 2ω have been

constructed by means of priority arguments.
Much is known about them. For example,
any two such sets are automorphic in the
lattice of Π0

1 subsets of 2ω under inclusion.

See Martin/Pour-El 1970,
Downey/Jockusch/Stob 1990, 1996,
Cholak et al 2001.

Theorem (Simpson 2002).

Let p be the weak degree of a Π0
1 set P ⊆ 2ω

which is thin and perfect. Then p is
incomparable with r1. Hence 0 < p < 0′.
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Relationship to measure and dimension.

Theorem (Simpson 2002). If P ⊆ 2ω is thin

and perfect, then P is of measure 0.

Theorem (Binns 2006). If P ⊆ 2ω is thin and

perfect, then P is of Hausdorff dimension 0.

Note (Hitchcock 2000). For any Π0
1 set

P ⊆ 2ω, the effective Hausdorff dimension of

P is equal to the Hausdorff dimension of P .

Question (Simpson 2002). Does there exist

a thin perfect Π0
1 set P ⊆ 2ω such that the

Turing upward closure of P is of measure

> 0?

Note. This is equivalent to asking whether

the weak degree of such a set can be

≤ inf(r2, 0′).

Note (Reimann). By a theorem in Reimann’s

thesis, all Turing cones are of Hausdorff

dimension 1.
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Some additional “smallness properties”:

Let P be a Π0
1 subset of 2ω.

Definition. P is small if there is no recursive

function f such that for all n there exist n

members of P which differ at level f(n) in the

binary tree. (Binns 2003)

Example. Let A ⊆ ω be hypersimple, and let

A = B1 ∪ B2 where B1, B2 are r.e. Then

P = {X ∈ 2ω | X separates B1, B2} is small.

Definition. P is h-small if there is no

recursive, canonically indexed sequence of

pairwise disjoint clopen sets Dn, n ∈ ω, such

that P ∩ Dn 6= ∅ for all n. (Simpson 2003)

For many of these smallness properties, there

are results and questions similar to the ones

which we formulated above for thin perfect

Π0
1 sets. One can ask about the measure and

dimension of P , and about the measure of

the Turing upward closure of P .
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Additional references:

Stephen Binns, Small Π0
1 classes, Archive for

Mathematical Logic, 45, 2006, 393–410.

Stephen G. Simpson, Mass problems and randomness,
Bulletin of Symbolic Logic, 11, 2005, 1–27.

Stephen G. Simpson, An extension of the recursively
enumerable Turing degrees, 15 pages, Journal of the

London Mathematical Society, to appear

Stephen G. Simpson, Some fundamental issues
concerning degrees of unsolvability, 18 pages, to
appear in Computational Prospects of Infinity, edited
by C.-T. Chong, Q. Feng, T. A. Slaman, W. H.
Woodin, and Y. Yang, World Scientific, to appear.

Stephen G. Simpson, Almost everywhere domination
and superhighness, preprint, 28 pages, July 2006, in
preparation.

Some of my papers are available at

http://www.math.psu.edu/simpson/papers/.

Transparencies for my talks are available at

http://www.math.psu.edu/simpson/talks/.

THE END
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