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During the nineteenth century, and up until around 1939, many major
mathematicians were deeply interested in, and actively contributed to, the
foundations of mathematics.1 Indeed, the period saw the development of
several important new branches of mathematics (set theory, model theory,
computability theory and proof theory). But since then interest by working
“core” mathematicians in such foundational (and philosophical) questions
has declined. However, foundations has been partially resuscitated since the
early 1970s by the pioneering work of Harvey Friedman, whose distinctive
foundational program is known as “reverse mathematics” (henceforth, RM).
Stephen G. Simpson’s new book Subsystems of Second-Order Arithmetic is
the first monograph on RM. Why, you ask, concentrate on second-order
arithmetic? The reason is that very much ordinary (or “core”) mathemat-
ical knowledge can be formalized within second-order arithmetic (or some
subsystem). Simpson writes in the preface:

Almost all of the problems studied in this book are motivated
by an overriding foundational question: what are the appropriate
axioms for mathematics? We undertake a series of case studies to
discover which are the appropriate axioms for proving particular
theorems in core mathematical areas such as algebra, analysis and
topology. We focus on the language of second order arithmetic,

1For example: Bolzano, Cauchy, Weierstrass, Frege, Dedekind, Peano, Cantor,
Brouwer, Poincaré, Zermelo, Hilbert, Weyl, von Neumann, Gödel, Tarski and Turing.
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because that language is the weakest one that is rich enough to
express and develop the bulk of core mathematics. (pp. vii-viii).

After Chapter I (Introduction), the book is broken into Parts A and B,
and an Appendix. Chapter I describes axiomatic second-order arithmetic
(Z2), five important subsystems, and explains the main ideas behind RM.
Chapter II contains a detailed discussion of the “base theory” RCA0 and
Chapters III-VI of Part A develop RM for the four remaining subsystems.
Chapters VII-IX of Part B discusses the model theory for the subsystems of
Z2. The Appendix contains some additional results.

Simpson treats second-order arithmetic as a first-order axiomatic theory
Z2, formulated in a (two-sorted) first-order language L2 (an extension of the
usual first-order language of arithmetic, obtained by adding atomic formulas
of the form n ∈ X, where n is a number variable and X is a set variable).
The axioms of Z2 are the usual first-order axioms of Peano Arithmetic plus,

(i) Induction Axiom:

∀X[(0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X))→ ∀n(n ∈ X)]

(ii) Full 2nd Order Comprehension Scheme:

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ(n) is any formula of L2 in which X does not occur freely.

The strong deductive power of Z2 derives from the full comprehension
scheme (ii), whose instances are set-existence axioms: the scheme (ii) asserts
the existence of a set X of numbers n such that ϕ(n) holds. Note that the
induction axiom (i) is distinct from (and sometimes weaker than) the full
second-order induction scheme, [ϕ(0) ∧ ∀n(ϕ(n) → ϕ(n + 1))] → ∀nϕ(n).
However, this scheme is in fact provable in full Z2.

The five main subsystems of Z2 studied are, in increasing logical strength,
RCA0 (recursive comprehension axiom), WKL0 (Weak König’s Lemma),
ACA0 (arithmetical comprehension axiom), ATR0 (arithmetic transfinite
recursion) and Π1

1-CA0 (Π1
1 comprehension axiom). Each of the three sub-

systems RCA0, ACA0 and Π1
1-CA0 of Z2 is defined by a specification of

a restricted class of formulas which can go into either the comprehension or
induction schemes (roughly, either Σn

k formulas or Πn
k formulas or a com-

bination. I lack the space to go into details). WKL0 is RCA0 plus the
axiom “every infinite tree of binary sequences has an infinite path” (i.e., a
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version of König’s Lemma, the theorem we use in proving Gödel’s complete-
ness theorem for first-order logic) and ATR0 is ACA0 plus an axiom scheme
which permits transfinite recursion on well-ordered sequences. (It turns out
that these systems WKL0 and ATR0 are equivalent (over RCA0) to Σ0

1

separation and Σ1
1 separation, respectively: see p. 40).

In general, it is possible (via devious coding mechanisms) to express many
basic theorems of core mathematics (analysis, algebra, topology) within the
language of second-order arithmetic. Chapter II of Simpson’s book contains
the development of many theorems of core mathematics within RCA0. As
Simpson explains, “RCA0 ... is seen to embody a kind of formalized com-
putable or constructive mathematics” (p. 41). Further, Simpson notes that
each of the chosen subsystems corresponds (perhaps loosely) with some im-
portant foundational position. The following is based on Simpson’s table on
p. 42:

System Motivation Associated with
RCA0 Constructivism Bishop
WKL0 Finitistic reductionism Hilbert
ACA0 Predicativism Weyl, Feferman
ATR0 Predicative reductionism Friedman, Simpson

Π1
1-CA0 Impredicativity Feferman, et al.

On a standard account, mathematics involves proving theorems from ax-
ioms (be they “self-evidently true”, “grounded in intuition”, merely “stipu-
lative”, or whatever). RM involves deducing axioms from theorems. The
methodology (and some of the main results) of RM is introduced in Chapter
I, and involves three main ingredients: (1) A base theory B (some subsys-
tem of Z2), (2) a sequence S1,S2, ..., of set-existence axioms of increasing
strength, and (3) some (core mathematical) theorem ϕ. A “reversal” is then
to establish a metatheorem of the form: B ` ϕ ↔ Si. Results of this form
establish not only that the theorem ϕ can be proved in the system B∪Si, but
also that the axiom (or each instance of the axiom scheme) Si can be deduced
from the theorem ϕ (modulo B, of course). It then follows that (modulo B)
the axiom Si is the weakest such from which the theorem ϕ can be proved.
Throughout the bulk of Simpson’s book, the base theory chosen is RCA0.
Chapter III develops in detail the main known reversals for ACA0. Consider
the Bolzano/Weierstrass Theorem, BW : “Every bounded sequence of real
numbers, or of points in Rn, has a convergent subsequence”. Theorem III.2.2
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(pp. 106-7) shows that BW is equivalent to ACA0 over RCA0. That is,
RCA0 ` BW↔ ACA0. Simpson remarks:

The point here is that the Bolzano/Weierstrass theorem (an or-
dinary mathematical statement) implies arithmetical comprehen-
sion (a set existence axiom). Thus no set existence axiom weaker
than arithmetical comprehension will suffice to prove the Bolzano/Weierstrass
theorem. (p. 107).

The remaining Chapters IV-VI of Part A develop similar detailed re-
verse mathematics results for the other three main subsystems of Z2. In
general, by demonstrating that certain set-existence axioms are required to
develop a part of core mathematics, one establishes rather precise limits on
the reconstructive powers of the various reductive philosophical programmes
mentioned in the table above.

The techniques of Chapter IX (“Non-ω-Models”) are model-theoretic, but
are mainly geared up to proving conservation theorems. A theory T∗ in L∗

is a conservative extension of another theory T in L just in case L ⊆ L∗,
T ⊆ T∗ and any L-theorem ϕ of the extended theory T∗ is already a theorem
of T. Chapter IX contains several conservativeness results for subsystems
of Z2. For example, (a) ACA0 is conservative over PA for L1 sentences;
(b) RCA0 is conservative over Σ0

1-PA (PA with restricted induction), (c)
WKL0 is conservative over RCA0 for Π1

1 sentences; (d) WKL0 is conserva-
tive over PRA for Π0

2 sentences (PRA is primitive recursive arithmetic). As
mentioned, the proofs of these results use model-theoretic techniques. In an-
other review of Simpson’s book, John Burgess asked the important question
whether these model-theoretic proofs of conservativeness could be converted
to proof-theoretic (or “syntactic”, or “finitistic”) proofs. Harvey Friedman
has replied (on the moderated internet discussion list FOM: see below) that,
in fact, all of them can be given proof-theoretic proofs. The philosophical
significance of such conservativeness results is related to various forms of re-
ductionism. Simpson discusses these topics in Chapter IX (Sections 3 and
4), where he argues that such results yield “partial realizations of Hilbert’s
program”. Simpson introduces finitism as “that part of mathematics which
rejects completed infinite totalities and [which] is indispensable for all scien-
tific reasoning. ... [I]t is generally agreed that PRA captures this notion.”
(p. 381). Simpson explains that Gödel’s incompleteness theorems block a
wholesale realization of Hilbert’s programme and comments that “it is of
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interest to ask what part of Hilbert’s program can be carried out. .... Which
interesting subsystems of Z2 are conservative over PRA for Π0

1 sentences?
...” (p. 382). He concludes:

Theorem IX.3.16 shows that WKL0 is conservative over PRA
for Π0

1 sentences (in fact Π0
2 sentences). This conservation result,

together with the results of Chapter II and IV concerning the
development of mathematics within WKL0 implies that a signif-
icant part of mathematics is finistically reducible, in the precise
sense envisioned by Hilbert. (p. 382).

These results are certainly interesting. But it might well be argued that,
despite such partial successes for reductionism, Gödel’s incompleteness re-
sults themselves in general point in the opposite direction: towards non-
finitism and irreducibility (i.e., the indispensability of abstract set existence
axioms). In fact, it is possible to speculate that research in RM might tie in
(somehow) with some recent debates in the philosophical literature about the
indispensability of mathematics for empirical science (especially theoretical
physics). If certain parts of substantial mathematics are indispensable for
science, then (as Quine was perhaps the first to point out) we thereby ob-
tain a “holistic” (Putnam says “quasi-empirical”) scientific justification for
abstract mathematics (even for mathematical realism).

This review cannot do full justice to the comprehensive tour de force
treatment of RM in Simpson’s book. It is clear that RM contains results of
significance for numerous topics in the foundations and philosophy of math-
ematics. Gödel speculated that we might require higher and higher levels of
abstraction (in particular, abstract set existence axioms) in order to generate
proofs of (and understanding of) certain truths of arithmetic which remain
unprovable in weaker axiom systems. What RM achieves is, in a sense, an
elaboration of the fine structure of such Gödelian phenomena. There is no
question that the RM program initiated by Friedman, and further developed
by Simpson and others, significantly profits our understanding of philosoph-
ical and foundational problems concerning mathematics. Anyone interested
in the foundations of (and philosophy of) mathematics needs to know about
this work. Simpson’s book, despite its highly technical nature, is an excellent
and comprehensive introduction to this developing field.

[Stephen G. Simpson runs a moderated discussion group called “Founda-
tions of Mathematics”. The web page is at: www.math.psu.edu/simpson/fom].
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